首页|基于XGBoost的电网过流异常检测模型

基于XGBoost的电网过流异常检测模型

扫码查看
在电网系统中,异常检测效率直接影响到系统维护成本,传统电网异常检测方法基于专家经验知识转化为固定规则与阈值,存在一定的局限性.现有的异常检测研究多以窃电、设备故障为主要分析对象,对过流异常的分析不足.本文针对过流异常的特性,分析了传统经验规则存在的问题与缺陷,通过特征工程确定了特征量,提出了基于XGBoost的电网过流异常检测模型.通过实验数据测试与评估,本文模型在5折交叉验证中F1分数最低值相较于传统规则提升了19.2%,平均值相较于传统规则提升了15.1%,各项实验指标均优于基于传统经验规则的检测方法,且没有出现明显的性能差异,证明了模型的检测效果.与异常检测常用的其他机器方法对比,本文模型的F1分数提升了6.4%至8.7%,稳定性及准确性均有优势.通过训练数据远少于测试数据的极端情况测试以及对模型进行的可解释性分析表明,本文模型具有较高的透明度、可信度,同时具有良好的泛化性能,可以有效支撑在实际环境中推广应用于过流异常检测.
XGBoost-based power grid overcurrent anomaly detection model
Traditional power grid anomaly detection methods rely on converting expert knowledge into fixed rules and thresholds,which cannot meet the demands of rapidly evolving power grid systems.The current anomaly detection research mainly focuses on electricity theft and equipment failures as the main analysis objects,but the analysis of overcurrent anomalies is insufficient.This paper analyzes the characteristics of overcurrent anomalies,and discusses the problems and deficiencies of traditional experience-based rules.Through feature engineering,we determines the feature variables,and proposes an XGBoost-based power grid overcurrent anomaly detection model.Through experimental data testing and evaluation,the indicators of the model proposed in this paper outperform the detection methods based on traditional experience-based rules.In the 5-fold cross-validation,the minimum F1 score of the proposed model showed a 19.2%improvement compared to traditional rules,while the average value demonstrated a 15.1%improvement.The experimental results did not show significant performance differences,confirming the effectiveness of the model in anomaly detection.Compared to other commonly used machine methods for anomaly detection,the proposed model in this paper achieved an improvement of 6.4%to 8.7%in F1 score,demonstrating advantages in terms of stability and accuracy.The extreme case testing with training data significantly less than the testing data,along with the conducted interpretability analysis of the model,demonstrated that the proposed model exhibits high transparency and reliability.Moreover,it shows good generalization performance,making it suitable for effective deployment in real-world environments for overcurrent anomaly detection.

overcurrentanomaly detectionmachine learninginterpretability

马智强、康洁滢、梁飞、王进

展开 >

国网宁夏电力有限公司营销服务中心(国网宁夏电力有限公司计量中心) 宁夏 750010

成都大学 成都 610106

过电流 异常检测 机器学习 可解释性

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(21)