首页|改进Oriented R-CNN的遥感图像定向目标检测算法

改进Oriented R-CNN的遥感图像定向目标检测算法

扫码查看
近年来遥感目标检测的研究主要集中在改进边界框的表示方法,而忽略了遥感场景中独特的先验知识.为了进一步提高双阶段模型的检测精度,同时保持推理复杂度,本文以大核卷积构建的特征提取器LSKNet为基线,在特征表示和训练策略上进一步做出了改进.首先,通过RFA提取比例不变的上下文信息,以缓解LSKNet引入的背景噪声、提高模型对噪声的鲁棒性;然后,通过构建CS进一步提出CS策略来缩小不同尺度特征之间的语义鸿沟、使模型具备多尺度能力的同时更专注于小目标.本文的方法在几乎没有增加推理复杂度的同时,在大型遥感图像数据集DOTA上的单尺度结果达到了79.03%mAP50,证明了提出方案的有效性.
Augment Oriented R-CNN for remote sensing object detection
In recent years,research on remote sensing object detection has mainly focused on improving the representation methods for bounding boxes,while overlooking the unique prior knowledge present in remote sensing scenes.To further enhance the detection accuracy of two-stage models while maintaining inference complexity,this paper presents improvements in feature representation and training strategies based on the feature extractor LSKNet constructed with large kernel convolutions.First,the RFA module is introduced to extract scale-invariant contextual information,alleviating the background noise introduced by LSK and enhancing the model's robustness to noise.Then,the CS loss is proposed to implement a consistent supervision training strategy that reduces the semantic gap between features of different scales,enabling the model to possess multi-scale capabilities while focusing more on small objects.The proposed method achieves a single-scale result of 79.03%mAP50 on the large remote sensing image dataset DOTA,demonstrating the effectiveness of the proposed approach with almost no increase in inference complexity.

object detectionremote sensing imagessmall targetsresidual feature augmentationconsistent supervision

王雷雨、王正勇、陈洪刚、何小海

展开 >

四川大学电子信息学院 成都 610065

目标检测 遥感图像 小目标 残差特征增强 一致性监督

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(21)