首页|基于几何精度因子的磁目标参数解算优化方法

基于几何精度因子的磁目标参数解算优化方法

扫码查看
基于三轴磁传感器阵列的磁性目标参数(位置、磁矩)求解常受传感器噪声等观测误差影响,导致结果可靠性不强.为降低观测误差、测量噪声等对解算结果的影响,本文中利用几何精度因子的原理对磁传感器阵列的布局进行优化,降低噪声等观测误差对磁性参数解算时的干扰能力.经仿真实验,比较三传感器在不同排布下观测平面的几何精度因子均值与方差,找到可靠的传感器阵列优化布局方案:参考圆半径r为观测平面的20%~30%;传感器阵列位于参考圆弧上,且以正三角形排布;参考圆所在平面与观测平面距离d为0.经试验验证,传感器阵列未以优化布局排布时,利用LM算法对三轴磁矩矢量的解算偏差[mx,my,mz]最大为:[0.034 4,0.027 9,0.028 8]A·m2,位置解算偏差[x,y,z]最大为:[3.37,3.14,3.31]cm;优化阵列布局后,其解算偏差[mx,my,mz]与[x,y,z]的最大值分别降低了[75.37%,78.66%,76.74%]与[72.67%,92.83%,85.76%].传感器阵列布局的优化对提高磁性目标参数解算精度具有一定的指导意义.
Calculation of magnetic target parameters based on geometric accuracy factor optimization method
Solving the magnetic target parameters(position,magnetic moment)using a three-axis magnetic sensor array is a typical nonlinear least squares optimization problem,and the Levenberg-Marquardt(LM)optimization algorithm is often used.However,when solving this problem,it is affected by observation errors such as sensor noise,which leads to less reliable results.In order to reduce the influence of observation errors,measurement noise and other effects on the solution results,in this paper,the principle of geometric accuracy factor is used to optimize the layout of the magnetic sensor array,in order to reduce the ability of noise and other observation errors to interfere with the magnetic parameter solving,and the accuracy of the magnetic target parameter solving is improved by decreasing the mean and variance of the geometric accuracy factor of the observation plane.After simulation experiments,we compare the mean and variance of the geometric accuracy factor of the observation plane with different arrangements of the three sensors,and find a reliable optimal layout scheme for the sensor array:the radius of the reference circle r is 20%~30%of the observation plane;the sensor array is located in the arc of the reference circle and arranged in a positive triangle;and the distance between the plane in which the reference circle is located and the observation plane d is 0.It is verified that when the sensor arrays are not arranged in an optimized layout,the solution deviation[mx,my,mz]of the three-axis magnetic moment vectors using the LM algorithm is up to[0.034 4,0.027 9,0.028 8]A·m2,and that of the positional solution deviation[x,y,z]is up to[3.37,3.14,3.31]cm;the optimized array layout reduces the maximum values of the solution deviation[mx,my,mz]and the maximum value of[x,y,z]are reduced by[75.37%,78.66%,76.74%]and[72.67%,92.83%,85.76%]respectively.The optimization of the sensor array layout is instructive for improving the accuracy of magnetic target parameter solving.

sensor array optimizationgeometric precision factormagnetic target positioningmagnetic moment calculationmagnetic dipole modelmagnetic field

陈碧聪、张晓明、张鸽、蒋仕龙

展开 >

中北大学电子测试技术国家重点实验室 太原 030051

中北大学仪器科学与动态测试教育部重点实验室 太原 030051

传感器阵列优化 几何精度因子 磁性目标定位 磁矩解算 磁偶极子模型 磁场

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(22)