首页|基于全局注意力的Gam-EEGNet在SSVEP分类中的应用

基于全局注意力的Gam-EEGNet在SSVEP分类中的应用

扫码查看
稳态视觉诱发电位(SSVEP)作为脑机接口(BCI)系统中的重要信号类型,因其高稳定性和易操作性而广泛应用于BCI研究.在过去的研究中,已有许多方法在SSVEP信号分类中取得了显著进展,但依然面临着信噪比低、信号非平稳性和个体差异大的挑战.为进一步提升SSVEP分类的准确性和实用性,本文提出了一种结合全局注意力机制与紧凑脑电网络(EEGNet)的新型神经网络架构——Gam-EEGNet.EEGNet作为一种紧凑、高效且适应性强的基础模型,在SSVEP信号处理中具有重要作用.通过在EEGNet中引入全局注意力机制,Gam-EEGNet能够更精确地提取和表征SSVEP信号特征,从而有效降低个体差异和噪声的影响.实验采用了涵盖12种不同频率的SSVEP脑电数据,并将Gam-EEGNet与典型卷积神经网络(CCNN)、滤波器组-时间卷积神经网络(FB-tCNN)和滤波器组-时间卷积神经网络(SSVEPNet)等主流深度学习方法进行了分类性能对比.结果表明,Gam-EEGNet在不同时间窗口下的分类准确率和信息传输率(ITR)均优于其他方法,特别是在0.7 s的短时间窗口内,分类精度达到86.58%;在1 s时间窗内,多名被试者的平均识别准确率超过95%,ITR超过189 bits/min.此外,Gam-EEGNet在训练过程中表现出更好的收敛性和稳定性,具有更快的收敛速度和更低的训练误差.这些结果表明,Gam-EEGNet在SSVEP信号分类中展现出显著的性能提升,尤其适用于实时BCI系统中的快速响应场景,具有广泛的应用潜力.
The application of Gam-EEGNet with global attention mechanism in SSVEP classification
Steady-state visual evoked potential(SSVEP)is an essential signal type in brain-computer interface(BCI)systems,widely utilized in BCI research due to its high stability and ease of operation.While previous studies have achieved significant progress in SSVEP signal classification,challenges such as low signal-to-noise ratio,non-stationarity,and individual variability still persist.To further enhance the accuracy and practicality of SSVEP classification,this paper proposes a novel neural network architecture—Gam-EEGNet—that combines a global attention mechanism with EEGNet.EEGNet,known for its compact,efficient,and adaptive structure,plays a critical role in SSVEP signal processing.By incorporating a global attention mechanism into EEGNet,Gam-EEGNet can more accurately extract and represent SSVEP signal features,effectively reducing individual variability and noise interference.Experiments were conducted using SSVEP EEG data encompassing 12 different frequencies,and the performance of Gam-EEGNet was compared with that of other mainstream deep learning methods,including CCNN,FB-tCNN,and SSVEPNet.The results demonstrate that Gam-EEGNet outperforms these methods in terms of classification accuracy and information transfer rate(ITR)across different time windows,particularly achieving a classification accuracy of 86.58%within a short 0.7 s time window.In a 1 s time window,the average recognition accuracy across multiple subjects exceeded 95%,with an ITR above 189 bits/min.Moreover,Gam-EEGNet showed better convergence and stability during training,with faster convergence and lower training errors.These results indicate that Gam-EEGNet offers significant performance improvements in SSVEP signal classification,making it especially suitable for real-time BCI systems requiring rapid response,with broad application potential.

deep learningbrain-computer interfacesteady-state visual evoked potentialsglobal attention mechanism

刘俊杰、谢俊、王虎、胡博

展开 >

新疆大学机械工程学院 乌鲁木齐 830017

深度学习 脑-机接口 稳态视觉诱发电位 全局注意力机制 Gam-EEGNet模型

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(22)