首页|基于本体的非结构化道路场景建模和行为决策的方法研究

基于本体的非结构化道路场景建模和行为决策的方法研究

扫码查看
本文章针对非结构化道路,自主车辆难以进行有效导航和决策规划的问题,提出了一种基于本体论进行驾驶场景建模与行为决策的方法.首先,建立了非结构化道路中各个元素的本体模型,其中利用八方位模型来描述道路场景中无人车和障碍物之间的位置关系.然后,将自主车辆中栅格地图的笛卡尔坐标系转换为Frenet坐标系,以组合弹簧模型为架构定义风险函数来评估车辆在当前场景行车的风险值.再将光电信息数据和先验驾驶知识进行融合,形成本体知识库.最后用Prolog推理机推理出最终的行为决策结果,而该结果需满足安全性和合理性评估.实验结果表明,在非结构化道路中,该方法在决策层面能给出更符合驾驶员行为的决策结果、在辅助规划路径方面也表现良好.
Research on unstructured road scene modeling and behavior decision-making based on ontology
In this paper,a method for driving scene modeling and behavior decision-making based on ontology is proposed to solve the problem that autonomous vehicles have difficulty in effective navigation and decision-making planning on unstructured roads.First,an ontology model of each element in the unstructured road is established,in which the eight-direction model is used to describe the positional relationship between the unmanned vehicle and obstacles in the road scene.Then,the Cartesian coordinate system of the grid map in the autonomous vehicle is converted into the Frenet coordinate system,and the risk function is defined with the combined spring model as the framework to evaluate the risk value of the vehicle driving in the current scene.Then,the photoelectric information data and prior driving knowledge are integrated to form an ontology knowledge base.Finally,the Prolog inference engine is used to infer the final behavior decision result,which must meet the safety and rationality evaluation.Experimental results show that in unstructured roads,this method can give a decision result that is more in line with the driver's behavior at the decision level and also performs well in assisting path planning.

unmanned drivingbehavioral decision-makingontologyunstructured roadeight-direction modelcombined spring model

姚彬、赵盼、林玲龙、杨名

展开 >

安徽大学物理与光电工程学院 合肥 230601

中国科学院合肥物质科学研究院智能机械研究所 合肥 230031

无人驾驶 行为决策 本体 非结构化道路 八方位模型 组合弹簧模型

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(22)