首页|基于掩码建模和对比学习的故障诊断方法

基于掩码建模和对比学习的故障诊断方法

扫码查看
尽管大多数故障诊断研究以图像、音频等作为研究的数据类型,但表格型数据的故障诊断研究仍然具有重要意义.在表格型故障诊断领域,以前的相关工作大多集中在传统的监督学习方法并且对跨工况故障诊断任务的基准评估有所不足.本文介绍一种用于表格型数据跨工况故障诊断任务的自监督学习方法,该方法将对比学习思想和表格掩码建模策略应用于以Transformer为骨干的自编码器架构.在凯斯西储大学轴承数据集的诊断实例上的结果显示,本文的方法经过适当微调后可以在目标任务中普遍优于监督学习基线方法的诊断精度.与自监督学习基线方法相比,对比学习策略和表格掩码建模策略的引入分别使得自编码器在3个目标任务中的平均诊断精度提高了0.74%和3.35%.此外,为了验证所提出的方法的合理性,本文进一步分析和讨论了该方法的保真度和效用.
Fault diagnosis method based on masking modeling and contrastive learning
While image and audio data often dominate fault diagnosis research,the exploration on fault diagnosis of tabular data remains of paramount significance.In the field of tabular fault diagnosis,prior endeavors primarily focused on traditional supervised learning methods,and the evaluation of cross-condition fault diagnosis tasks was insufficient.In this paper,we introduce a self-supervised learning method customized for cross-condition fault diagnosis in tabular data,which combines contrastive learning strategy and tabular masking modeling strategy with a Transformer-based autoencoder architecture.The results of diagnostic instance on the Case Western Reserve University datasets demonstrate that after proper fine-tuning,our method can generally outperform the diagnostic accuracy of the supervised learning baselines in the target tasks.Compared with the self-supervised learning baselines,the introduction of contrastive learning strategy and tabular masking modeling strategy increases the average diagnostic accuracy of the autoencoder by 0.74%and 3.35%respectively in the three target tasks.Furthermore,our comprehensive analysis and discussion on the fidelity and utility of the proposed method serve to demonstrate its rationality.

autoencoderfault diagnosistabular datacontrastive learningtabular masking modeling

程祺珺、杨瑞峰、郭晨霞

展开 >

中北大学仪器与电子学院 太原 030051

自编码器 故障诊断 表格数据 对比学习 表格掩码建模

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(22)