首页|基于改进YOLOv9的钢板表面缺陷检测的方法

基于改进YOLOv9的钢板表面缺陷检测的方法

Method for defect detection on steel plate surface based on improved YOLOv9

扫码查看
针对钢板表面缺陷种类多、缺陷差异较大、漏检率高等问题,提出一种改进YOLOv9的缺陷检测算法.首先,算法通过FasterNet中的FasterBlock改进特征提取网络中的RepNCSPELAN4模块,设计了RepNCSPELAN4-FB模块,实现多尺度特征融合,从而降低模型的参数量,其次,利用iRMB的倒残差结构和一种高效多尺度注意力模块EMAttention相结合形成一种新的iEMA模块,提高网络的精确度,最后,使用Inner-WIOU损失函数,改善边界框回归损失,提高了模型对不均匀分布及不同尺度目标缺陷的检测性能.通过在GC10-DET数据集上进行实验,改进的算法在精确率、召回率和map@0.5方面相比原算法提高了3.5%、3%、2.1%.该模型在钢铁表面缺陷检测中表现有较好的性能.
Aiming at the problems of many types of defects on the surface of steel plate,large defect differences,high leakage detection rate,etc.,a defect detection algorithm to improve YOLOv9 is proposed.Firstly,the algorithm improves the RepNCSPELAN4 module in the feature extraction network through the FasterBlock in FasterNet,and the RepNCSPELAN4-FB module is designed to realize the multi-scale feature fusion,so as to reduce the number of parameters of the model,and secondly,using the inverse residual structure of iRMB and a kind of highly efficient multi-scale attention module,EMAttention,to combine to form a new iEMA module that improve the accuracy of the network,and finally,using the Inner-WIOU loss function to improve the bounding box regression loss,which improves the model's detection performance for inhomogeneous distributions and target defects at different scales.Through experiments on the GC10-DET dataset,the improved algorithm improves the precision,recall and map@0.5 by 3.5%、3%and 2.1%compared with the original algorithm.The model shows good performance in steel surface defect detection.

yolov9Faster BlockEMAInner-IoUsurface defect detection

周建新、李忠泽、郝英杰

展开 >

华北理工大学电气工程学院 唐山 063210

YOLOv9 Faster Block EMA Inner-IoU 表面缺陷检测

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(22)