首页|基于编码器和多尺度特征融合的轮胎缺陷检测

基于编码器和多尺度特征融合的轮胎缺陷检测

扫码查看
轮胎内部缺陷检测能够及时发现轮胎生产中存在的潜在问题,可为工艺调整及行驶安全提供有力保障.而轮胎X光图像中的缺陷目标具有多尺度、极端长宽比、形状各异且不规则、小目标多以及正负样本不均衡等特点,致使缺陷检测精度低.针对以上情况,提出一种基于高效编码器与多尺度特征融合的轮胎缺陷检测方法.首先结合可变形注意力机制和通道注意力机制设计一个高效的编码器,以增强特征提取和表示能力,然后构建多尺度特征提取和融合模块,融合浅层与深层特征信息,来保留重要上下文信息并增强特征表示的多样性,最后在模型训练中自适应边界框回归方法,动态分配难易样本权重,减少无效样本,实现模型快速收敛、提高模型泛化能力.实验结果表明,改进后模型在轮胎缺陷数据集上的平均精度(mAP)达到95.5%,较基线网络提高3.6个百分点,为轮胎缺陷检测的实际落地应用奠定了一定的基础.
Tire defect detection based on encoder and multi-scale feature fusion
Tire internal defect detection can effectively identify potential issues during the manufacturing process,providing strong support for process adjustments and ensuring driving safety.Defect targets in tire X-ray images are characterized by multi-scale features,extreme aspect ratios,diverse and irregular shapes,a large number of small targets,and an imbalance between positive and negative samples,which results in low detection accuracy.To address these challenges,we propose a tire defect detection method based on an efficient encoder and multi-scale feature fusion.First,an efficient encoder is designed by combining deformable attention mechanisms and channel attention mechanisms to enhance feature extraction and representation capabilities.Then,a multi-scale feature extraction and fusion module is constructed to integrate shallow and deep feature information,preserving critical contextual information and improving feature representation diversity.Finally,an adaptive bounding box regression method is employed during model training to dynamically allocate weights to samples based on difficulty,reducing the impact of invalid samples and achieving faster model convergence while enhancing generalization.Experimental results demonstrate that the proposed model achieves a mean average precision(mAP)of 95.5%on the tire defect dataset,a 3.6 percentage point improvement over the baseline network,thus laying a solid foundation for the practical application of tire defect detection.

object detectionfeature fusionbounding box regressiontire production defectattention mechanism

王广周、崔雪红、王旭、龚玉洁、丁志星

展开 >

青岛科技大学信息科学技术学院 青岛 266061

目标检测 特征融合 边界框回归 轮胎生产缺陷 注意力机制

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(23)