首页|基于CEEMDAN和CDSSAICA的转向电机噪声信号识别

基于CEEMDAN和CDSSAICA的转向电机噪声信号识别

扫码查看
为解决车载转向电机噪声源识别不准确的问题.本文提出了一种基于自适应噪声的完备经验模态分解、改进樽海鞘群的独立分析方法.首先提出一种改进樽海鞘群的独立分析方法,该方法通过改进Tent混沌映射进行种群初始化,领导者及追随者更新机制分别采用Logistic混沌映射和动态学习;然后通过仿真实验验证该方法比传统的快速独立分析方法和樽海鞘独立分析方法分离效率分别提高4.38%和1.01%;最后采用该联合算法对车载转向电机单通道噪声信号进行分离识别,结果表明该联合算法能有效分离电机振动噪声信号中不同频率的特征信号,稳定工况下电机噪声的主要原因是由转子不平衡以及电磁噪声引起.
Steering motor noise signal recognition based on CEEMDAN and CDSSAICA
In order to solve the problem of inaccurate identification of noise source of vehicle steering motor.In this paper,a complete empirical mode decomposition based on adaptive noise and an improved independent analysis method for Salps populations are proposed.Firstly,an independent analysis method for improved Salp population was proposed.The method used improved Tent chaotic mapping to initialize the population,and Logistic chaotic mapping and dynamic learning were used to update the leader and follower,respectively.The simulation results show that the separation efficiency of the proposed method is 4.38%and 1.01%higher than that of FastICA and SSAICA,respectively.Finally,the combined algorithm is used to separate and identify the single channel noise signal of the vehicle steering motor.The results show that the combined algorithm can effectively separate the characteristic signals of different frequencies in the vibration noise signal of the motor.The main reasons for the motor noise under stable working conditions are rotor unbalance and electromagnetic noise.

vehicle steering motornoise source identificationsalp algorithmblind source separation

李响、吴超华、吴刚、史晓亮、樊雄

展开 >

武汉理工大学机电工程学院 武汉 430070

车载转向电机 噪声信号识别 樽海鞘算法 盲源分离

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(23)