首页|基于EGJO的流域水风光一体化优化调度

基于EGJO的流域水风光一体化优化调度

扫码查看
为发展双碳背景下的新型电力系统调度模型与方法,构建了一个考虑阶梯碳交易的含流域水风光一体化(WHWP)的多能互补调度模型.为提高含WHWP的多能互补调度模型这类高维度非凸优化问题的求解效率和适应性,本文提出了一种基于Logistic混沌映射、准反射学习策略、高斯随机游走策略、最优个体局部搜索结合差分变异扰动策略的金豺优化算法(EGJO).首先,利用Logistic混沌映射生成初始化种群,增强了算法的空间多样性;其次,通过在金豺算法搜索、包围并攻击阶段分别引入准反射学习策略和高斯随机游走策略更新豺狼对位置,强化算法全局寻优能力以及收敛速度;最后,合并更新位置后引入最优个体局部搜索结合差分变异扰动策略,提高求解精度.算例分析在扩展IEEE3机9节点和一个某省域简化电力系统展开.结果表明,考虑阶梯碳交易的含 WHWP的多能互补调度模型的综合运行成本分别减少8.55%、10.78%,碳排放量分别减少178.26 t和17 841.68 t;与主流的7种优化算法相比,EGJO求解成本最少分别降低1.108万元、1401万元,标准差分别降低了1.598和0.004;充分验证了本文所提模型与方法的有效性和优越性.
Research on integrated optimal scheduling of watershed-type hydro-wind-photovoltaic based on EGJO
In order to develop a new type of power system scheduling model and method under the dual-carbon background,a multi-energy complementary scheduling model with Watershed-type integration of hydro-wind-photovoltaic(WHWP)is constructed by considering stepped carbon trading.In order to improve the solution efficiency and adaptability of such high-dimensional non-convex optimization problems of the WHWP-containing multi-energy complementary scheduling model,this paper proposes an enhanced golden jackal optimization algorithm(EGJO)based on Logistic chaotic mapping,quasi-reflective learning strategy,Gaussian random wandering strategy,and Optimal Individual local search mechanism combined with differential variational perturbation strategy.First,the initialized population is generated using Logistic chaos mapping,which enhances the spatial diversity of the algorithm.Second,by introducing quasi-reflective learning strategy and Gaussian random wandering strategy to update the jackal pair positions in the search,encircle-and-attack phases of the golden jackal algorithm,respectively,the algorithm's global optimization capability as well as convergence speed are strengthened.Finally,the optimal Individual local search mechanism combined with the differential variational perturbation strategy is introduced after merging the updated positions to improve the solution accuracy.The analysis of the algorithm is carried out in the extended IEEE3 machine 9 node and a simplified power system in a provincial area.The results show that the comprehensive operating costs of the WHWP-containing multi-energy complementary dispatch model considering stepwise carbon trading are reduced by 8.55%and 10.78%,and the carbon emissions are reduced by 178.26 t and 17 841.68 t,respectively;compared with the mainstream seven optimization algorithms,the cost of the EGJO solution is reduced by at least 11 080 yuan and 14.01 million yuan,and the standard deviation of the cost is reduced by 1.598 and 0.004,respectively;fully verifying the effectiveness and superiority of the model and method proposed in this paper.1.598 and 0.004,respectively;fully verified the effectiveness and superiority of the model and method proposed in this paper.

WHWPEGJOLogistic chaotic mappingquasi-reflective learning strategyGaussian random wandering strategydifferential variational perturbation strategy

张建英、荣娜、田珺玲

展开 >

贵州大学电气工程学院 贵阳 550025

流域水风光一体化 改进金豺算法 Logistic混沌映射 准反射学习策略 高斯随机游走策略 差分变异扰动策略

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(23)