首页|基于时-频-空域特征表征方法的自闭症儿童诊断

基于时-频-空域特征表征方法的自闭症儿童诊断

扫码查看
自闭症谱系障碍是一组复杂的神经系统疾病,通常出现在幼儿期,目前,自闭症儿童的诊断主要依赖于行为观察和诊断量表,然而由于儿童的某些行为症状可能不明显,诊断结果往往存在一定的主观性.为了提高自闭症儿童早期诊断辨识的准确性,本文提出一种基于时-频-空三域特征以及改进快速相关滤波算法的诊断方法.首先利用脑电信号中时-频-空特征之间的互补性全面分析脑功能网络.其次,采用改进快速相关滤波算法进行特征优化,筛选出相关但非冗余的特征,最后采用BP-Adaboost分类器辨识诊断.通过实验对比分析发现,该模型效果较为优异,BP-Adaboost分类器具有较高的辨识精度,平均诊断准确率达到98.72%,该模型可用作辅助神经科医生诊断自闭症的辅助工具.
Diagnosis of autistic children based on temporal-spectral-spatial feature representation
Autism spectrum disorder is a group of complex neurological disorders that usually appear in early childhood.At present,the diagnosis of autistic children mainly relies on behavioral observation and diagnostic scales.However,some behavioral symptoms of children may not be obvious,the diagnosis results are general subjective.In order to improve the accuracy of early diagnosis and identification of autistic children,the paper proposes the diagnosis method based on temporal-spectral-spatial three-domain features and improved fast correlation based filter.Firstly,the complementarity between temporal-spectral-spatial features of EEG signals is used to analyze the brain functional network.Secondly,the improved fast correlation based filter algorithm is used to optimize the features and screen out the relevant but non-redundant features.Finally,BP-Adaboost classifier is used for identification and diagnosis.Through comparative analysis of experiments,it is found that the model has excellent effect,and the BP-Adaboost classifier has a higher identification accuracy,with an average diagnostic accuracy of 98.72%.The model can be used as an auxiliary tool to assist neurologists in diagnosing autism.

autism spectrum disorderbrain connectivityfeature optimizationpattern recognition

王亚民、潘礼正、闵云霄、石旻弘

展开 >

常州大学机械与轨道交通学院 常州 213164

自闭症 脑连接性 特征优化 模式识别

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(23)