首页|基于多尺度空洞融合注意力的车道线检测算法

基于多尺度空洞融合注意力的车道线检测算法

扫码查看
UFSA-LD算法在提取车道线的细长结构特征时,面临信息丢失、长距离上下文捕获困难以及边界细节识别不敏感等挑战.本文提出一种基于多尺度空洞特征融合注意力的车道线检测算法:在UFSA-LD辅助分割分支加入MDFA模块,借助空洞空间金字塔池化(ASPP)扩展了网络的感受野,多尺度捕捉车道特征;利用融合注意力机制(FCBAM)从通道与空间多维度过滤干扰信息,增强关键特征表示.引入Dice Loss损失函数,更多关注车道线的边缘与局部结构信息.实验结果表明:改进后模型在TuSimple数据集上检测精度由95.81%提升至96.03%;在CULane数据集上F1指标较原文提升1.8,验证了模型改进的有效性.
Lane detection method based on multi-scale dilated fusion attention
The UFSA-LD algorithm faces challenges in extracting the thin and long structural features of lane lines,such as information loss,difficulty in capturing long-distance context,and insensitivity to boundary detail recognition.This paper proposes a lane line detection algorithm based on multi-scale atrous feature fusion attention:an MDFA module is added to the UFSA-LD auxiliary segmentation branch,and the receptive field of the network is expanded through atrous spatial pyramid pooling(ASPP)to capture lane features at multiple scales;a fusion channel and spatial attention mechanism(FCBAM)is used to filter out interfering information from channel and spatial dimensions,enhancing the representation of key features.The introduction of the Dice Loss loss function focuses more on the edges and local structural information of the lane lines.Experimental results show that the detection accuracy of the improved model on the TuSimple dataset has been increased from 95.81%to 96.03%;the F1 metric on the CULane dataset has improved by 1.8 compared to the original,validating the effectiveness of the model improvement.

lane detectionASPPfusion attentionDice Loss

李沐原、张兰春、张博源

展开 >

江苏理工学院汽车与交通工程学院 常州 213001

车道线检测 ASPP 融合注意力 Dice Loss

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(23)