首页|基于混合策略改进的海马优化器及其应用

基于混合策略改进的海马优化器及其应用

扫码查看
本文针对海马优化算法收敛精度低、全局搜索和局部开发不平衡、易陷入局部最优解等问题,提出了一种基于混合策略改进的海马优化器,记作ISHO.首先,融合灰狼优化算法的搜索特点改进海马优化算法的运动行为,使其能够在搜索空间内更有效地进行全局搜索和局部开发;然后,结合精英反向学习策略细化搜索过程,从而提高收敛精度;最后对海马优化器捕食阶段的参数进行调整,使其具有更强的自适应性避免算法过早的陷入局部最优解.将ISHO与其他6种智能优化算法在8种测试函数上进行比较,实验表明该算法相较于其他算法有更好的收敛速度、收敛精度和稳定性.将改进的海马优化算法应用到解决工程约束问题上,进一步证明改进算法的实用性.
Based on the improved sea-horse optimization algorithm with hybrid strategy and its applications
This paper addresses the issues of low convergence accuracy,imbalance between global and local search,and the tendency to get stuck in local optima in the Sea-horse Optimizer.An Improved Sea-horse Optimizer based on a hybrid strategy,denoted as ISHO,is proposed.Firstly,the search characteristics of the Grey Wolf Optimizer are integrated to improve the movement behavior of the SHO,enabling more effective global and local searches within the search space.Then,an elitism and reverse learning strategy is incorporated to refine the search process and enhance convergence accuracy.Finally,adjustments are made to the parameters of the predation phase of the SHO to give it stronger adaptability,avoiding premature convergence to local optima.The ISHO is compared with six other intelligent optimization algorithms on eight test functions.Experimental results show that the proposed algorithm has better convergence speed,accuracy,and stability compared to the other algorithms.Applying the improved seahorse optimization algorithm to solve engineering constraint problems further proves the practicality of the improved algorithm.

sea-horse optimizergrey wolf optimizerelite opposition-based learningparameter adjustment

康培培、薛贵军、谭全伟

展开 >

华北理工大学电气工程学院 唐山 063210

华北理工大学智能仪器厂 唐山 063000

海马优化算法 灰狼优化算法 精英反向学习策略 参数调整

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(23)