首页|基于阶段特征融合的图像融合行人检测

基于阶段特征融合的图像融合行人检测

扫码查看
目前可见光与红外图像融合行人检测算法中存在特征不平衡与特征融合不充分等问题.针对上述问题,提出一种分阶段特征融合可见光-红外图像的行人检测网络 MIFNet.构建的双流网络同时处理可见光与红外输入;设计模态间信息融合模块,改变网络的结构减少特征不平衡造成的影响,提取-注入结构在特征提取的过程中自动学习如何提取多模态全局信息并将其有效地注入可见光与红外特征中,提升网络鲁棒性与特征融合效果.设计并嵌入特征增强融合模块,增强两种模态的独特信息,进一步提升特征融合效果.实验结果表明,算法漏检率仅为9.74%,与基线算法相比降低了6%,有效的提升了算法的检测性能.
Image fusion pedestrian detection based on stage feature fusion
There are problems such as feature imbalance and insufficient feature fusion in the visible and infrared image fusion pedestrian detection algorithm.To address the above problems,we propose a multispectral pedestrian detection network MIFNet with phased feature fusion,a dual-stream network that handles both visible and infrared inputs,an intermodal information fusion module that changes the structure of the network to reduce the impact of feature imbalance,and an extraction-injection structure that automatically learns how to extract multimodal global information during the process of feature extraction and injects it into the visible and infrared features efficiently,which improves the robustness of the network and feature fusion effect.The feature enhancement fusion module is designed and embedded to enhance the unique information of the two modalities to further improve the feature fusion effect.The experimental results show that the leakage rate of the algorithm is only 9.74%,which is 6%lower than that of the baseline algorithm,effectively improving the detection performance of the algorithm.

pedestrian detectiontwo-stream networksfeature fusion

葛荣泽、武一

展开 >

河北工业大学电子信息工程学院 天津 300401

河北工业大学电子与通信工程国家级实验教学示范中心 天津 300401

行人检测 双流网络 特征融合

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(24)