首页|基于改进YOLOv7的血细胞检测算法

基于改进YOLOv7的血细胞检测算法

扫码查看
血细胞检测是诊断许多疾病的重要手段,血细胞数量和形态的变化常常反映人体的健康状况.然而,人工检测耗时且易出现误检和漏检.为此,本文提出了一种基于改进YOLOv7的血细胞检测算法—YOLOv7-SMC.该算法首先在特征提取过程中结合空间和通道重构卷积,减少了特征冗余并提高了性能;然后在颈部网络中加入混合局部通道注意力机制,增强了模型的表征能力;并且用内容感知特征重组上采样算子替换最近邻插值上采样,从而自适应地调整上采样策略,得到细节丰富的结果;最后引入基于最小点距离的边界框相似度度量损失函数,简化了边界框相似性比较.实验结果表明,该算法在BCCD数据集上的3类血细胞检测中,总样本均值平均精度mAP@0.5和mAP@[0.5:0.95]分别提升了2.6%和2.9%,展现出较高的实用性和准确性.
Blood cell detection algorithm based on improved YOLOv7
Blood cell detection is a critical tool for diagnosing various diseases,as changes in blood cell count and morphology often reflect a person's health condition.However,manual detection is time-consuming and prone to errors and omissions.To address these challenges,this paper presents an improved blood cell detection algorithm based on the YOLOv7 framework,named YOLOv7-SMC.The algorithm integrates spatial and channel reconstruction convolution to reduce feature redundancy and enhance performance.Additionally,a mixed local channel attention is incorporated in the neck network to strengthen the model's representational capability.The algorithm also replaces the nearest neighbor interpolation upsampling with a content-aware reassembly of features upsampling operator,which adaptively adjusts the upsampling strategy to produce detailed and smooth results.Furthermore,a minimum point distance intersection over union loss function is introduced to simplify the similarity comparison between bounding boxes.Experimental results on the BCCD dataset demonstrate that this algorithm improves the mean average precision at IoU thresholds of 0.5 and 0.5:0.95 by 2.6%and 2.9%,respectively,indicating its high practicality and accuracy.

blood cell detectionYOLOv7spatial and channel reconstruction convolutionattention mechanism

张文鹏、李晨

展开 >

南京信息工程大学电子与信息工程学院 南京 210044

无锡学院江苏省通感融合光子器件及系统集成工程研究中心 无锡 214105

血细胞检测 YOLOv7 空间和通道重构卷积 注意力机制

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(24)