首页|基于全景分割与多视图几何的动态SLAM方法

基于全景分割与多视图几何的动态SLAM方法

扫码查看
在SLAM系统估计相机位姿时,大量运动物体的特征点参与特征跟踪线程导致算法准确性和鲁棒性下降,因此如何高效准确地剔除场景中的动态物体尤为重要.现有的动态视觉SLAM算法在处理动态物体时可能漏检或是错误地将静态物体识别为动态物体并将其剔除,引发静态特征点数量不足的问题,进而影响SLAM系统的稳定性和精度.因此提出一种基于全景分割与多视图几何的视觉SLAM方法,该算法使用全景分割FPN网络准确识别分割图像中的所有物体,剔除先验动态特征点并尽可能多地保留静态特征,在此基础上使用融合图像金字塔的LK光流法实现光流跟踪并剔除平行动态特征点,潜在的动态特征点则采用基于动态概率的多视图几何法更有效地对其剔除,避免了动态特征点漏检的情况,实现对场景中动态物的全面筛查以提高系统精度.在系统构建的稀疏点云的基础上实现对语义地图与八叉树地图的构建.实验使用TUM RGB-D数据集验证系统定位精度,结果表明,与ORB-SLAM2相比,本算法在所有序列的绝对轨迹误差的均方根误差(RMSE)平均降低了84.34%,显著提升了系统的鲁棒性和准确性,并且构建两种可用于SLAM上层任务的地图,具有一定的使用价值.
Dynamic SLAM approach based on panoptic segmentation and multi-view geometry
When the SLAM system estimates the camera position,a large number of feature points of moving objects participate in the feature tracking thread leading to a decrease in the accuracy and robustness of the algorithm,so how to efficiently and accurately reject the dynamic objects in the scene is particularly important.Existing dynamic vision SLAM algorithms may miss detecting or incorrectly recognize static objects as dynamic objects and reject them when dealing with dynamic objects,which triggers the problem of insufficient number of static feature points,thus affecting the stability and accuracy of the SLAM system.Therefore,this paper proposes a visual SLAM method based on panoptic segmentation and multi-view geometry,which uses panoptic segmentation FPN network to accurately recognize all objects in the segmented image,rejects a priori dynamic feature points and retains as many static features as possible,based on which LK optical flow method with fused image pyramid is used to realize optical flow tracking and reject parallel dynamic feature points,and potential dynamic feature points are used to track the dynamic feature points.The potential dynamic feature points are rejected more effectively by the multi-view geometry method based on dynamic probability,which avoids the omission of dynamic feature points and realizes the comprehensive screening of dynamic objects in the scene to improve the accuracy of the system.The construction of semantic map and octree map is realized on the basis of sparse point cloud constructed by the system.The experiments use the TUM RGB-D dataset to verify the system localization accuracy,and the results show that the root mean square error(RMSE)of the absolute trajectory error of this algorithm is reduced by an average of 84.34%in all sequences compared with ORB-SLAM2,which significantly improves the robustness and accuracy of the system,and it is of use to construct two maps that can be used for SLAM upper layer tasks.

visual SLAMdynamic scenespanoptic segmentationmulti-view geometryimage pyramidsoctree maps

王爽、刘云平、张柄棋、陆旭春、徐梁

展开 >

南京信息工程大学自动化学院 南京 210044

中国人民解放军海军大连舰艇学院 大连 116018

视觉SLAM 动态场景 全景分割 多视图几何 图像金字塔 八叉树地图

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(24)