首页|基于AgriSwin的植物病虫害检测算法

基于AgriSwin的植物病虫害检测算法

扫码查看
针对现代农业中植物病虫害检测所面临的多尺度特征和复杂背景处理难题,本文提出了一种高效且精准的检测模型AgriSwin,以提升农业病虫害检测的精度和效率.AgriSwin模型在Swin Transformer的基础上,融合了扩张特征聚合模块与自适应空间卷积模块.扩张特征聚合模块通过不同扩张率的卷积层实现多尺度特征提取,并利用全局特征信息的自适应加权机制优化了特征融合效果.自适应空间卷积模块则通过生成自适应权重,对特征图进行动态加权,从而在复杂背景下增强局部和全局信息的捕捉能力.实验结果表明,AgriSwin模型在 PlantDoc、PlantVillage和自建数据集上的检测精确率分别达到79.65%、99.90%和95.08%.此外,该模型的参数量比Swin Transformer-T减少了25.63%,在保持高精确率的同时显著降低了内存和计算资源的占用,展示了在大规模农业应用中的广泛潜力.
Plant disease and pest detection algorithm based on AgriSwin
To address the challenges of multi-scale features and complex background processing in plant pest and disease detection in modern agriculture,this paper proposes an efficient and accurate detection model,AgriSwin,to improve the precision and efficiency of agricultural pest and disease detection.The AgriSwin model is based on the Swin Transformer and integrates a dilated feature aggregation module and an adaptive spatial convolution module.The dilated feature aggregation module extracts multi-scale features through convolutional layers with different dilation rates and optimizes feature fusion using an adaptive weighting mechanism for global feature information.The adaptive spatial convolution module generates adaptive weights to dynamically weight the feature maps,enhancing the ability to capture both local and global information in complex backgrounds.Experimental results show that the AgriSwin model achieves detection accuracies of 79.65%、99.90%、and 95.08%on the PlantDoc,PlantVillage,and custom datasets,respectively.Additionally,the model's parameter count is reduced by 25.63%compared to Swin Transformer-T,significantly lowering memory and computational resource requirements while maintaining high accuracy,demonstrating its broad potential for large-scale agricultural applications.

plant disease and insect pest detectiondeep learningconvolutional neural networkmultiscale convolutionadaptive spatial convolutionfeature aggregationagricultural automation

刘微、张傲

展开 >

沈阳理工大学信息科学与工程学院 沈阳 110159

植物病虫害检测 深度学习 卷积神经网络 多尺度卷积 自适应空间卷积 特征聚合 农业自动化

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(24)