首页|基于归一化RBFNN的油井动液面测量数据异常辨识

基于归一化RBFNN的油井动液面测量数据异常辨识

扫码查看
为解决油井动液面测量数据中存在的缺失值、非线性和非平稳特性导致的数据特征提取准确性不足,以及无法实现油井动液面位置精准测量的问题,提出基于归一化RBF神经网络的油井动液面测量数据异常辨识方法.通过安装在油井上的传感器实时采集数据,利用基于专家库的多源油归一化处理技术完成数据的校验与整合.采用经验模态分解(EMD)技术将数据分解为趋势项与波动项,去除波动项后,将趋势项数据作为归一化RBF神经网络的输入.实验结果表明,该方法可有效补全不完整数据,并通过趋势项准确辨识异常数据并提供合理替代值,获得的动液面位置曲线与实际动液面位置曲线基本吻合,误差最高不超过2 m,可实现油井动液面位置的精准估计.基于归一化RBF神经网络的油井动液面测量数据异常辨识方法解决了数据缺失、非线性和非平稳性带来的挑战,实现了油井动液面位置的精准估计,为油井动液面的实时监测和数据分析提供了技术支撑.
Abnormal identification of dynamic liquid level measurement data in oil wells based on normalized RBFNN
In order to solve the lack of accuracy of data feature extraction caused by missing values,nonlinear and non-stationary characteristics in the measurement data of oil well dynamic liquid level,and the problem that the accurate measurement of oil well dynamic liquid level position cannot be achieved,an abnormal identification method of oil well dynamic liquid level measurement data based on normalized RBF neural network is proposed.Through the sensor installed on the oil well to collect data in real time,the multi-source oil normalization processing technology based on expert database is used to complete the data verification and integration.Empirical mode decomposition(EMD)is used to decompose the data into trend and fluctuation terms.After removing the fluctuation terms,the trend data is used as the input of normalized RBF neural network.The experimental results show that this method can effectively complete incomplete data,accurately identify abnormal data through the trend term and provide reasonable alternative values,and the obtained dynamic liquid level position curve is basically consistent with the actual dynamic liquid level position curve,with the maximum error of less than 2 m,which can realize the accurate estimation of the dynamic liquid level position of oil wells.The abnormal identification method of oil well dynamic liquid level measurement data based on normalized RBF neural network solves the challenges brought by data missing,nonlinearity and non stationarity,realizes the accurate estimation of oil well dynamic liquid level position,and provides technical support for real-time monitoring and data analysis of oil well dynamic liquid level.

normalizationRBF neural networkoil well dynamic liquid levelmeasurement dataabnormal identification

贾鹿、赵磊、凌飞、李广亚

展开 >

中国石油新疆油田分公司 克拉玛依 834000

航天恒星空间技术应用有限公司 西安 710077

归一化 RBF神经网络 油井动液面 测量数据 异常辨识

2024

电子测量技术
北京无线电技术研究所

电子测量技术

CSTPCD北大核心
影响因子:1.166
ISSN:1002-7300
年,卷(期):2024.47(24)