首页|基于深度神经网络去噪方法的井下与地表地震计波形记录对比分析

基于深度神经网络去噪方法的井下与地表地震计波形记录对比分析

扫码查看
2024 年 2 月 24 日安徽肥东发生ML 3.5 地震,选取淮安地震监测中心站井下地震计及淮阴地震监测中心站地表地震计记录波形进行常规滤波及噪声分析,采用深度神经网络去噪方法将地震波形和噪声数据分离,并进行时频分析,结果表明:①基于原始信号测定震级,地表地震计所测定震级更大;②经去噪处理,地表与井下地震计测定震级相近,但波形成分存在差异,其中井下地震计水平分量高频成分更多,而地表地震计则垂直分量高频成分更多,且P波发育,振幅大,推测为地面土层对地震波的放大作用所致;③地表地震计噪声记录含高频成分,推测为环境背景噪声,而井下地震计记录地震时产生的次生噪声频率和强度呈逐渐衰减趋势,据噪声形态判定,推测为井下地震计弹性支架受地震波场作用产生共振所致,说明所处空间不同,噪声来源发生了变化.
Comparative analysis of underground and surface seismometer waveform records based on deep neural network denoising method
ML 3.5 earthquake occurred in Feidong,Anhui Province on February 24,2024.The waveforms recorded by underground seismograph and surface seismograph at Huai'an Earthquake Monitoring Center Station were selected for conventional filtering and noise analysis.The seismic waveforms and noise data were separated by deep neural network denoising method,and time-frequency analysis was carried out.Results shows that,① Based on the original signal,the magnitude measured by the surface seismometer is larger;② After denoising,the seismic magnitude measured by surface seismometer and underground seismometer is similar,but the waveform components are different.The horizontal component of underground seismometer has more high-frequency components,while the vertical component of surface seismometer has more high-frequency components,and the P wave is developed and the amplitude is large,which is presumed to be caused by the amplification of seismic waves by the ground layer;③ The noise recorded by the surface seismometer contains high-frequency components and is presumed to be environmental background noise,while the frequency and intensity of the secondary noise generated by the underground seismometer when recording the earthquake show a gradually decreasing trend.According to the noise pattern,it is presumed to be caused by the resonance of the elastic support of the underground seismometer under the action of seismic wave field,indicating that the noise source has changed in different spaces.

underground and surface seismometerspectral characteristicsartificial neural networkDeepDenoiser methodseismic noise

李子威、殷翔、郭宇鑫、李松华、胡超、陈健

展开 >

中国江苏 223001 淮安地震监测中心站

地面与井下记录 频谱特性 神经网络 DeepDenoiser方法 地震噪声

2024

地震地磁观测与研究
中国地震台网中心 中国地震局地球物理研究所 中国地震学会地震观测技术专业委员会

地震地磁观测与研究

影响因子:0.248
ISSN:1003-3246
年,卷(期):2024.45(6)