首页|基于CDCA-YOLOv8的无人机图像小目标识别

基于CDCA-YOLOv8的无人机图像小目标识别

扫码查看
为解决无人机航拍图像中小目标实例多、遮挡严重的问题,提出了一种新的小目标检测算法CDCA-YOLOv8.算法在骨干网络中引入了中心注意力机制,在降低计算复杂度的同时提升特征提取能力;结合可变形卷积网络的优势,改进了卷积模块,并设计了基于可变形卷积技术的C2f模块,增强多尺度特征提取.同时设计了基于自适应结构特征融合的检测头,以提高小目标检测的精度.实验结果表明,与YOLOv8n相比,CDCA-YOLOv8在VisDrone2019数据集上将平均精度均值mAP0.5提高了 4.4个百分点,mAP0.5∶0.95提高了 3.1个百分点,展示了更优的小目标检测效果.
Small Object Detection in Drone Images Based on CDCA-YOLOv8
A new small object detection algorithm CDCA-YOLOv8 is proposed to solve the problem of multiple small object instances and severe occlusion in drone aerial images.The algorithm introduces a central attention mechanism in the backbone network,which improves feature extraction capability while reducing computational complexity.Combining the advantages of deformable convolutional networks,the convolution module is improved and a C2f module based on deformable convolution technology is designed to enhance multi-scale feature extraction.A detection head based on adaptive structural feature fusion is designed to improve the accuracy of small target detection.The experiment results show that compared with YOLOv8n,CDCA-YOLOv8 improves the mean average accuracy mAP0.5 by 4.4 percentage points on the VisDrone2019 dataset,and mAP0.5∶0.95 improves by 3.1 percentage points,which demonstrates better small object detection performance.

YOLOv8drone imagesmall object detectionfeature extraction

吴诗娇、林伟

展开 >

福州大学物理与信息工程学院,福州 350000

YOLOv8 无人机图像 小目标识别 特征提取

2025

电子与封装
中国电子科技集团公司第五十八研究所

电子与封装

影响因子:0.206
ISSN:1681-1070
年,卷(期):2025.25(1)