首页|基于特征向量信息支持向量机的RC框架易损性曲线预测

基于特征向量信息支持向量机的RC框架易损性曲线预测

扫码查看
易损性曲线将结构破坏等级与地震动强度相关联,能够直观地反映结构破坏的概率,但在建立易损性曲线的过程中需要大量的结构非线性时程分析结果,因而计算效率不高.机器学习方法已被证明能较好地解决这一问题,但当训练数据的规模较大时,由于训练过程涉及求解大规模逆矩阵致使计算效率依然低下.为此,本文提出了一种特征向量信息支持向量机(EILS-SVM)的新方法克服此类方法的不足.在大规模数据集下,EILS-SVM能够筛选小规模子样本建立低秩核矩阵.这使得其训练过程只需求解小规模低秩矩阵的逆矩阵,进而极大提高计算效率.为了验证EILS-SVM的准确性和高效性,基于16500个钢筋混凝土(RC)框架在地震作用下的破坏数据,分别与支持向量机(LS-SVM)、随机森林、神经网络、线性判别分析(LDA)、贝叶斯作对比.结果表明,EILS-SVM能准确预测RC框架的易损性曲线,其计算效率最高能提升近27倍.
Eigenvectors-informed Support Vector Machines for Fragility Curve Predictions of RC Frames
Fragility curves establish a correlation between structural damage levels and seismic intensity,offering an intu-itive depiction of the probability of structural failure.However,the generation of these curves necessitates a sub-stantial amount of structural nonlinear time-history analysis results,thereby rendering the computational process in-efficient.Machine learning techniques have been proven to effectively address this issue,yet their efficacy dimini-shes with the increase in the scale of training data due to the computational demands of solving large-scale inverse matrices during the training phase.In response,this paper proposes a novel methodology,the Eigenvector Infor-mation-supported Support Vector Machine(EILS-SVM),which surmounts the limitations associated with these techniques.By employing a selective subsample to construct a low-rank kernel matrix in the context of large-scale datasets,the EILS-SVM method requires only the inversion of small-scale,low-rank matrices,significantly en-hancing computational efficiency.To validate the accuracy and efficiency of the EILS-SVM,it is benchmarked a-gainst conventional models such as the Least Squares Support Vector Machine(LS-SVM),Random Forest,Neu-ral Networks,Linear Discriminant Analysis(LDA),and Bayesian methods,using a dataset comprised of 16500 instances of damage in Reinforced Concrete(RC)frames subjected to seismic activities.The results indicate that the EILS-SVM is capable of accurately predicting the fragility curves of RC frames,with a computational efficiency improvement of up to 27 times compared to existing methodologies.

RC frame structuresfragility curveseigenvectorssupport vector machinesmachine learning

周宇、骆欢

展开 >

湖北省地质灾害防治工程技术研究中心,湖北宜昌 443002

三峡大学土木与建筑学院,湖北宜昌 443002

钢筋混凝土框架 易损性曲线 特征向量 支持向量机 机器学习

湖北省自然科学基金面上项目国家自然科学基金青年科学项目

2022CFB29452208485

2024

地震研究
云南省地震局

地震研究

CSTPCD北大核心
影响因子:0.884
ISSN:1000-0666
年,卷(期):2024.47(3)
  • 30