首页|基于LM-BP神经网络的办公建筑逐时空调能耗预测

基于LM-BP神经网络的办公建筑逐时空调能耗预测

Hourly Energy Consumption Prediction of Office Building Air-Conditioning Based on LM-BP Neural Network

扫码查看
利用LM算法对BP神经网络进行改进,以提高模型收敛速度,减少迭代次数,并分别对夏季、冬季空调能耗模拟数据进行样本训练和测试,构建了LM-BP神经网络的办公建筑逐时空调能耗预测模型.结果表明夏季模型的预测值和模拟值之间的MAPE误差平均为5.74%,冬季模型的MAPE误差平均为5%,其误差均在10%以内,说明LM-BP神经网络在建筑空调能耗预测方面的可行性.并以成都地区某办公建筑实际空调能耗数据为基础对该模型进行了验证,其预测值与实际值平均相对误差为6.6%,说明建立的能耗预测模型能够满足实际工程的需要,准确的用电预测数据可为办公建筑用电侧进行实际电力市场交易提供科学的决策依据.
The LM algorithm is used to improve the BP neural network to enhance the convergence speed of the model,reduce the number of iterations.The LM-BP neural network is used to train and test samples of air-conditioning energy consumption simulation data in summer and winter respectively to construct a time-by-time air-conditioning energy consumption prediction model for office buildings.The results show that the MAPE error between the predicted value and the simulated value is 5.74%on average in summer model,and 5%in winter model,both of which are within 10%,which indicates the feasibility of using LM-BP neural network in predicting building air conditioning energy consumption.The model is verified on the basis of the actual air-conditioning energy consumption data of an office building in Chengdu area.The average relative error between the predicted value and the actual value is 6.6%,indicating that the established energy consumption prediction model can meet the needs of practical projects,and the accurate electricity prediction data can provide scientific decision-making basis for the actual electricity market transactions of office buildings.

air-conditioning energy consumptionLM algorithmneural networkoffice building

王曦、甘灵丽、王亮、欧雪梅

展开 >

四川省建筑设计研究院有限公司,成都 610000

西南科技大学,四川 绵阳 621010

泸州老窖股份有限公司,四川 泸州 646000

空调能耗 LM算法 神经网络 办公建筑

四川华西集团科技项目四川省建筑设计研究院有限公司院内科研项目

HXKX2020/012KYYN202102

2024

建筑节能(中英文)
中国建筑东北设计研究院有限公司

建筑节能(中英文)

CSTPCD
影响因子:0.695
ISSN:2096-9422
年,卷(期):2024.52(1)
  • 2