首页|基于Transformer的空调能耗预测模型构建与参数优化

基于Transformer的空调能耗预测模型构建与参数优化

Modelling and Parameter Optimization of the Energy Consumption Prediction for HVAC System Based on the Transformer Neural Network

扫码查看
针对空调系统能耗预测建模过程中的数据质量、模型输入参数筛选等问题,研究基于Transformer 神经网络的空调系统能耗预测模型构建和参数优化方法,结果表明:可以通过广义极端学生化偏差方法对数据中的离群值进行检测修正,从而提升数据质量;通过余弦相似度对输入参数进行两两相关性检验来消除各参数间的多重共线性,实现对输入参数的初步筛选;采用随机森林算法计算初选参数对空调能耗预测结果的影响来判断冗余参数,进而完成对输入特征参数的最终筛选;建立的空调能耗预测模型对数据测试集的预测结果均方根误差RMSE为38.831 kW,相关系数R2 为0.952,表现出了良好的预测性能.
To address the data quality and the input parameters screening of the HVAC system energy consumption prediction,this research investigates the potential parameter optimization approach of the HVAC energy consumption prediction model based on the Transformer neural grid.The result indicates that a Generalized Extreme Studentized Deviate(GESD)algorithm can be used to find outliers,correct data,and thus improve data quality.The initial screening of the input parameters is conducted through a cosine similarity association test,which will reduce the multicollinearity between the parameters.To review and screen the final input feature parameters,the accuracy of the prediction results is determined using the Random Forest(RF)algorithm,which helps to eliminate extraneous elements.The final energy consumption prediction model of HVAC system shows good prediction performance on test dataset,with an R2of 0.952 for the test set of data and a root mean square error(RMSE)of 38.831 kW.

energy consumption prediction of HVAC systemTransformer neural networksdata qualitymodel parameter optimization

刘兴成

展开 >

中国电子科技南湖研究院,浙江 嘉兴 314001

空调系统能耗预测 Transformer神经网络 数据质量 模型参数优化

上海市青年科技英才"扬帆计划"项目

21YF1460000

2024

建筑节能(中英文)
中国建筑东北设计研究院有限公司

建筑节能(中英文)

CSTPCD
影响因子:0.695
ISSN:2096-9422
年,卷(期):2024.52(3)
  • 19