首页|数据处理方法对空调系统能耗预测模型的影响

数据处理方法对空调系统能耗预测模型的影响

扫码查看
基于北方地区一个热泵空调系统的全年实际运行数据,比较了不同的数据降噪方法和不同的特征选择方案对能耗预测的径向基函数(Radial Basis Function,RBF)神经网络模型性能的影响.比较了用经验模态分解、Savitzky-Golay滤波和小波变换3种降噪方法处理数据后与未降噪相比,模型的性能优劣及满足热泵机组热平衡数据对模型性能的影响,同时比较了 Flitter法、Wrapper法和Embedded法3种特征选择方案下的模型性能.结果表明:采用小波变换法降噪后的模型精度最高,再使用满足热泵机组热平衡的数据训练模型,模型的精度还能继续提高;Embedded法选择模型的特征变量,能耗预测模型的精度最高;使用小波变换法降噪和Embedded法选择特征变量并筛选满足热泵机组热平衡的数据对数据处理前误差越大的模型的改善效果越显著.
Influence of Data Preprocessing Methods for Energy Consumption Prediction Models in Air Conditioning Systems
According to annual operating data of a heat pump system in northern China,the effects of three denoising methods and three feature selection schemes on the performance of energy consumption prediction models based on radial basis function neural networks are compared.After using empirical mode decomposition,Savitzky Golay,and wavelet transform for denoising,the performance of the energy consumption model and the influence of data satisfying the thermal balance of heat pump units on the model are compared with the model without denoising.Simultaneously the different model performance produced by the feature variables selected by three feature selection methods including filter,wrapper and embedded are compared.The results show that the model accuracy is the highest after denoising using wavelet transform method,and the accuracy of the model can be further promoted by training the model with data that meets the thermal balance of the heat pump unit.Compared to the flitter and wrapper methods,using the embedded method to select the feature variables of the model results in the highest accuracy of the energy consumption prediction model.And the lower the accuracy of the original model,the greater the improvement of the model after wavelet transform denoising and embedding feature selection.The same pattern is observed after training the energy consumption model using data that satisfies the thermal balance of the heat pump unit.

air conditioning systemenergy consumption predictiondata preprocessingfeature selection

王舒平、樊国辉、张伯言、李祥立、赵天怡、端木琳

展开 >

大连理工大学建设工程学院,辽宁 大连 116024

空调系统 能耗预测 数据预处理 特征选择

2024

建筑节能(中英文)
中国建筑东北设计研究院有限公司

建筑节能(中英文)

CSTPCD
影响因子:0.695
ISSN:2096-9422
年,卷(期):2024.52(12)