首页|复杂场景下基于视觉的非完整车位识别的算法改进

复杂场景下基于视觉的非完整车位识别的算法改进

扫码查看
为提高复杂场景下非完整车位识别的准确性,提出了一种基于视觉的车位识别改进算法.该识别算法采用了限制对比度自适应直方图均衡化方法,增强了图像细节;通过设置感兴趣区域和全局阈值分割法,区分了车位和背景、减少了车位周围环境噪声对车位识别的影响;利用形态学和连通域分析,排除了车位上的细小噪声和其他剩余噪声;结合Canny边缘检测标记车位线轮廓边缘点,在原图上绘制准确的车位线轮廓.不同复杂环境下开展了非完整车位识别的试验,试验结果表明,所提出的改进算法相对于传统车位识别算法能够更准确地识别非完整车位,且具有较好的适应性和实时性.
Algorithm improvement of vision-based incomplete parking space recognition in complex scenes
In order to enhance the accuracy of incomplete parking space recognition in complex scenes,an im-proved vision-based parking space recognition algorithm was proposed.This recognition algorithm adopts a con-trast-limited adaptive histogram equalization method to enhance image details.By setting regions of interest and using the global threshold segmentation method,the parking spaces and backgrounds are distinguished,and the impact of ambient noise around parking spaces on parking recognition is reduced.Morphology and connec-ted component analysis are utilized to eliminate other small noises and residual noises on the parking space.Combined with Canny edge detection,the edge points of the parking line contour are marked,and the accurate parking line contour is drawn on the original image.Experiments were conducted on incomplete parking space recognition in different complex environments,and results show that compared with traditional parking space recognition algorithms,the proposed improved algorithm can identify incomplete parking spaces more accurately and has better adaptability and real-time performance.

complex scenesvisionparking space recognitionconnected component analysis

黄鼎键、江灏、钟勇

展开 >

福建省汽车电子与电驱动技术重点实验室,福建 福州 350118

福州市汽车机电行业技术创新中心,福建 福州 350118

复杂场景 视觉 车位识别 连通域分析

福建理工大学科研启动基金福州市科技重大项目国家留学基金

GY-Z191192022-ZD-008202109360001

2024

福建工程学院学报
福建工程学院

福建工程学院学报

影响因子:0.318
ISSN:1672-4348
年,卷(期):2024.22(1)
  • 14