首页|融合长短时记忆与图结构学习的水库水位预测

融合长短时记忆与图结构学习的水库水位预测

扫码查看
水库水位变化受降雨、泄洪、蒸发等众多因素影响,现有水库水位预测方法的预测精度有待提升.为此,提出一种融合长短期记忆网络(long short-term memory,LSTM)和图卷积神经网络(graph convolution neural network,GCN)的水库水位预测模型.该模型首先借助LSTM提取水位与相关影响因素的时序依赖特征;随后,设计图结构学习模块,自动捕捉水位及不同影响因素间的关联关系;最后利用GCN进行表征学习和预测.在三峡大坝数据集及合作企业提供的数据集上开展了广泛实验,实验结果证实了所提模型的有效性和优越性.
Reservoir level prediction via integrating long short-term memory and graph structure learning
The water level change of reservoirs is affected by many factors such as rainfall,flood discharge,and evaporation.The prediction accuracy of existing reservoir water level prediction methods needs to be im-proved.Therefore,a reservoir water level prediction model was proposed integrating long short-term memory(LSTM)and graph convolution neural network(GCN).The proposed model first extracts time-series depend-ent features of water level and related influencing factors by using LSTM.Then,a graph structure learning module is designed to automatically capture the correlation between water level and different influencing factors.Finally,GCN is used for feature learning and prediction.Extensive experiments were conducted on the Three Gorges Dam dataset and datasets provided by cooperative enterprises.The experimental results demon-strated the effectiveness and superiority of the proposed model.

reservoir level predictionlong short-term memory networkgraph neural networkdeep learning

郭宝椿、李佐勇、陈健、卢维楷、马森标

展开 >

福建理工大学 电子电气与物理学院,福建 福州 350118

闽江学院 计算机与控制工程学院,福建 福州 350108

福建省信息处理与智能控制重点实验室,福建 福州 350121

福建中锐网络股份有限公司,福建 福州 350108

展开 >

水库水位预测 长短期记忆网络 图神经网络 深度学习

国家自然科学基金福建省自然科学基金福建省自然科学基金

619721872022J019522023J01953

2024

福建工程学院学报
福建工程学院

福建工程学院学报

影响因子:0.318
ISSN:1672-4348
年,卷(期):2024.22(1)
  • 11