首页|改进的DDeepLabV3+语义分割网络

改进的DDeepLabV3+语义分割网络

扫码查看
针对语义分割网络在移动智能化终端上存在参数量大、分割精度不足的问题,提出一种改进的DDeepLabV3+网络算法.首先,采用深度可分离的MobileNet结构作为网络的骨干部分,降低网络的参数量和复杂度,从而有效减少了运行时间.其次,引入网络的低级特征,实现多尺度信息融合,减少网络下采样引起的空间信息损失.最后,结合注意力机制设计网络ASPP结构,增强特征提取在实验中的利用.优化后的网络结构在保持较高分类准确性的前提下,计算时间显著减少.网络的平均交并比在Cityscapes和Camvid数据集中分别提升了 2.37%和 2.13%.
Improved DDeepLabV3+semantic segmentation network
Aiming at the problems of too large a number of parameters and insufficient segmentation accuracy of semantic segmentation network on mobile intelligent terminals,an improved DDeepLabV3+network algo-rithm was proposed.First,the depth-separable MobileNet structure is used as the backbone of the network to reduce the number of parameters and complexity of the network,thereby effectively reducing the running time.Secondly,low-level features of the network are introduced to achieve multi-scale information fusion and reduce the spatial information loss caused by network downsampling.Finally,the network ASPP structure is designed based on the attention mechanism to enhance the utilization of feature extraction in experiments.The optimized network structure significantly reduces the calculation time while maintaining high classification accuracy.In the Cityscapes data set used in the study,the average intersection and union ratio of the network increased by 2.37%,while in the Camvid dataset,the ratio increased by 2.13%.

semantic segmentationSE attention moduleDeeplabV3+network

蔡思静、汪严昱

展开 >

福建理工大学 电子电气与物理学院,福建 福州 350118

语义分割 SE注意力机制模块 DeepLabV3+网络

2024

福建工程学院学报
福建工程学院

福建工程学院学报

影响因子:0.318
ISSN:1672-4348
年,卷(期):2024.22(1)
  • 9