首页|基于机器视觉的电力塔杆锈蚀程度检测

基于机器视觉的电力塔杆锈蚀程度检测

扫码查看
针对电力塔杆在不同环境下运行容易产生表面锈蚀的问题,利用机器视觉技术引入一种基于YOLACT的实例分割方法.将ResNet作为主干网络来提取图像特征,使用多损失函数和Fast NMS来提高模型的分割性能;以YOLACT建立基线,在不同主干网络和分辨率下进行训练,选择平均精度较好的ResNet101-700×700 模型;从采集的图像中推断锈蚀的RGB颜色特征并划分锈蚀等级.使用边界框策略对塔杆进行锈蚀程度检测,提出线性投影的概念以更好地定位出锈蚀区域.在测试集上对该方法进行验证,其识别平均精确率达到 97.3%、平均召回率为 94.1%.
Corrosion degree detection of power tower poles based on machine vision
In response to the problem of surface corrosion of power tower poles in different environments,an instance segmentation method based on YOLACT is introduced by using machine vision technology.ResNet is used as the backbone network to extract image features,and multi-loss functions and Fast NMS are used to improve the segmentation performance of the model.YOLACT is used to establish the baseline,training is conducted at different backbone networks and resolutions,the ResNet101-700×700 model with better average accuracy is selected.The RGB color characteristics of corrosion are deduced from the acquired images and the corrosion degree is divided.A boundary box strategy is employed for corrosion detection on the towers.The concept of linear projection is introduced to better localize the corroded areas.Validation results on the test dataset achieve an average precision of 97.3%and an average recall of 94.1%.

machine visionpower tower polesYOLACTcorrosion detectionlinear projection

黄荷、黄靖、廖佳祥

展开 >

福建理工大学 电子电气与物理学院,福建 福州 350118

机器视觉 电力塔杆 YOLACT 锈蚀检测 线性投影

2024

福建工程学院学报
福建工程学院

福建工程学院学报

影响因子:0.318
ISSN:1672-4348
年,卷(期):2024.22(6)