首页|基于YOLOv8改进的下水管道障碍物识别算法

基于YOLOv8改进的下水管道障碍物识别算法

扫码查看
为提升下水管道障碍物清理效率和管道障碍物识别准确率,提出一种基于YOLOv8 改进的管道障碍物识别算法.通过优化YOLOv8 目标检测模型,使其更适用于环境复杂的管道内部障碍物检测任务.在YOLOv8 网络结构的基础上引入PGI模块,增加辅助可逆支路和多级辅助模块缓解信息瓶颈问题,减少精度损失;引入SCConv模块来替换C2f模块,在实现模型轻量化的情况下保持检测精度;引入Focal-Modulation模块改进了传统的SPPF模块,使模型的精度得到一定程度的提升.实验结果表明,改进后的识别算法与YOLOv8n模型相比,在mAP@0.5 精度上提升 4.6%,在mAP@0.5~0.95精度上提升 3.9%,参数量降低 33.3%,计算量减少 17.3%,更加适用于下水管道障碍物的识别检测.
Identification algorithm of sewer obstruction based on YOLOv8
In order to improve the cleaning efficiency of sewer pipe obstacles and the accuracy of pipeline obstacle recognition,an improved pipeline obstacle recognition algorithm based on YOLOv8 is proposed.By optimizing the YOLOv8 target detection model,the algorithm is made more suitable for obstacle detection in the complex environment inside the pipeline.Based on the network structure of YOLOv8,the PGI module proposed is introduced.The addition of auxiliary reversible branches and multistage auxiliary module in the module effectively alleviates the information bottleneck problem,as a result significantly reducing the loss of accuracy.The SCConv module is introduced to replace the C2f module to maintain the detection accuracy while realizing the lightweight of the model.The introduction of Focal-Modulation module improves the traditional SPPF module,so that the accuracy of the model is improved to a certain extent.Experimental results show that compared with YOLOv8n model,the improved recognition algorithm improves the accuracy of mAP@0.5 by 4.6%,improves the accuracy of mAP@0.5~0.95 by 3.9%,reduces the number of parameters by 33.3%,and reduces the amount of calculation by 17.3%.It is more suitable for the identification and detection of obstacles in sewer pipes.

target detectionsewer pipeobstacle detectionPGISCConvFocal-Modulation

吴裕发、郑少峰

展开 >

福建理工大学 交通运输学院,福建 福州 350118

目标检测 下水管道 障碍物识别 PGI SCConv Focal-Modulation

2024

福建工程学院学报
福建工程学院

福建工程学院学报

影响因子:0.318
ISSN:1672-4348
年,卷(期):2024.22(6)