首页|西南桦立木生物量模型的研建

西南桦立木生物量模型的研建

扫码查看
基于2019-2020年在云南省境内采集并测定的157株西南桦立木生物量(其中地上生物量106株、全树生物量51株),建立地上、地下生物量一元(二元)独立模型W=a×Db、W=a×Db×HC,并采用相容性生物量模型建立西南桦地上总生物量与树枝、树叶、树干各分项生物量之和相容的西南桦立木生物量模型,采用根茎比建立地下生物量模型.结果表明:对于西南桦地上生物量,一元、二元模型分别选用权函数W=1/(D2)、W=1/(D2H),对于西南桦地下生物量,一元、二元模型分别选用权函数W=1/(D0.5)、W=1/(D0.5H0.5),进行加权回归求解模型参数,可明显减小异方差影响及提高模型稳定性;相容性生物量模型解决了立木树枝、树叶、树干等分项生物量之和与地上总生物量不相等问题;从评价指标来看,西南桦地上总生物量和树干生物量模型预估精度均在94%以上;树枝、树叶生物量模型预估精度在92%以上,地下生物量模型预估精度在87%以上.总之,各模型预估精度均达到了国家相关精度要求;研究成果可应用于西南桦生物量的估算.
Establisment of Single-tree Biomass Equations for Betula alnoides
In this paper,based on the biomass of 157 sample trees of Betula alnoides collected and measured in Yunnan Province from 2019 to 2020(including 106 above-ground biomass(AGB)and 51 whole tree biomass).The one-variable and two-variable above-ground and below-ground single-tree independent biomass equations as W=a×Db、W=a×Db×HC,the stem,branches,leaves bio-mass equations compatible with above-ground biomass equations were established.Finally a root-shoot ratio model was build up,which could be used to estimate below-ground biomass together with above-ground biomass equations.The results showed that:for one-way and binary equations of the above-ground and below-ground biomass,the weight functions W=1/(D2),W=1/(D2H),W=1/(D0.5)and W=1/(D2H)are selected respectively and weighted regression was carried out to solve the model parameters,which significantly reduced the influence of heteroscedasticity and improved the stability of the model.The compatible biomass equations solved the problem that the sum of the sub-biomass of single-tree branches,leaves,stem was inconsistent with the total above-ground biomass.The prediction precision of above-ground biomass and stem more than 94%,and were more than 92%for branches,leaves biomass estimation respectively,the prediction precision of below-ground biomass model was more than 87%,all models were recom-mended to be applied to biomass estimation of Betula alnoides.

Betula alnoidesbiomassstand-alone modelcompatibility modelweighted regressionroot-shoot

宋永全、周杭、张伟、刘彦宏、朱家诺

展开 >

云南省林业调查规划院,云南昆明 650051

西南林业大学,云南昆明 650224

宣威市林业和草原局,云南宣威 655400

西南桦 生物量 独立模型 相容性模型 加权回归 根茎比

2024

福建林业科技
福建省林学会,福建省林业科学研究院

福建林业科技

影响因子:0.528
ISSN:1002-7351
年,卷(期):2024.51(2)