首页|基于坐标注意力机制和残差网络的水稻叶片病虫害识别

基于坐标注意力机制和残差网络的水稻叶片病虫害识别

扫码查看
[目的]针对在自然条件下水稻叶片病虫害的识别效率不高、准确率较低的问题,探索基于ResNet深度学习网络的水稻叶片病虫害识别模型(ResNet50-CA).[方法]在ResNet-50的残差卷积模块下引入坐标注意力机制(CA),采用LeakyReLU激活函数替代ReLU激活函数,使用 3个 3×3的卷积核替换ResNet-50模型首层卷积层中的 7×7卷积核.[结果]在使用传统卷积神经网络进行水稻叶片病虫害研究发现,ResNet-50能够较好地平衡识别准确率和模型复杂度之间的关系,因此选择在ResNet-50网络模型的基础上加以改进.使用改进后的网络通过微调参数进行水稻叶片病虫害对比性能试验,研究发现在批量样本数为 16和学习率为 0.0001时,ResNet50-CA获得最高的识别准确率(99.21%),优于传统的深度学习算法.[结论]改进后的网络能够提取出水稻病虫害更加细微的特征信息,从而取得更高的识别准确率,为水稻叶片病虫害识别提供新思路和方法.
Improved Identification of Leaf Diseases and Pest Infestations on Rice by Means of Coordinate Attention Mechanism-based Residual Network
[Objective]A new deep learning network was designed to improve the often-inaccurate identification of diseases and pest infestations on rice.[Method]The coordinate attention mechanism(CA)was introduced under the residual convolution block of RestNet-50 using the LeakyRelu activation function to replace the Relu activation function as well as the three 3×3 convolution kernels to replace the original 7×7 convolution kernel under the first convolution layer.[Result]The newly designed ResNet-50-CA effectively balanced the detection accuracy and model simplicity the original method lacked.The improved model was further fine-tuned with experiments to achieve a much-improved detection accuracy of 99.21%in identifying the diseases and infestations on a batch of 16 specimens with a learning rate of 0.0001.[Conclusion]The superior deep learning algorithm of the current ResNet50-CA system extracted more detailed and accurate information on the diseases and infestations than did the previous model.It could be applied for field and/or clinic diagnosis on rice plants.

Deep learning networkResNet50rice leaf diseases and pest infestationscoordinate attention mechanism

廖媛珺、杨乐、邵鹏、余小云

展开 >

江西农业大学计算机与信息工程学院,江西 南昌 330045

江西省高等学校农业信息技术重点实验室,江西 南昌 330045

深度学习 ResNet50 水稻病虫害识别 坐标注意力机制

国家自然科学基金江西省自然科学基金

6186203220202BABL202034

2023

福建农业学报
福建省农业科学院

福建农业学报

CSTPCDCSCD北大核心
影响因子:0.656
ISSN:1008-0384
年,卷(期):2023.38(10)
  • 4