首页|基于迁移学习的飞机燃油系统故障检测方法研究

基于迁移学习的飞机燃油系统故障检测方法研究

扫码查看
为了提高燃油系统故障检测的准确性和可靠性,文中提出了一种基于随机森林的迁移学习方法(TR-LM).该方法根据源域和目标域已有数据,各自建立最为适合的分类模型.以源域和目标域的公共标签作为迁移枢纽,基于随机森林建立源特征和目标特征对公共标签的贡献度矩阵,并以此构建源域到目标域的特征映射.最后,使用Multiclass TrAdaBoost确定映射后源域样本和目标域样本的权重并做最后分类.为了验证该方法的有效性,使用了实际的飞机燃油系统数据集进行试验评估.试验结果表明:基于随机森林的迁移学习方法在飞机燃油系统故障检测中取得了优异的性能.与其他迁移学习方法相比,TRLM在准确性和可靠性方面都取得了显著的提升.
Research on Fault Detection Method of Aircraft Fuel System Based on Transfer Learning
In order to improve the accuracy and reliability of fuel system fault detection,a random forest-based transfer learning method(TRLM)is proposed in this paper.According to the existing data of source domain and target domain,the most suitable classification model is established respec-tively.Taking the public labels of source domain and target domain as the migration hub,the contri-bution matrix of source feature and target feature to the public label is established based on random forest,and the feature mapping from source domain to target domain is constructed.Finally,the Mul-ticlassTrAdaBoost was used to determine the weights of the source domain samples and the target do-main samples after mapping and the final classification was completed.In order to verify the effec-tiveness of this method,a real aircraft fuel system data set was used for experimental evaluation.The experimental results show that the transfer learning method based on random forest achieves excellent performance in the fault detection of aircraft fuel system.Compared with other transfer learning methods,TRLM has achieved significant improvements in both accuracy and reliability.

transfer learningfuel systemfault detection

武嘉琦、季友昌、袁伟伟

展开 >

南京航空航天大学计算机科学与技术学院,江苏南京 210016

迁移学习 燃油系统 故障检测

2024

飞机设计
沈阳飞机设计研究所

飞机设计

影响因子:0.138
ISSN:1673-4599
年,卷(期):2024.44(4)