首页|基于流形学习的涡扇发动机复合故障分类研究

基于流形学习的涡扇发动机复合故障分类研究

扫码查看
针对发动机复合故障具有非线性和重叠性特征,使故障诊断精度过低的问题,引入了一种有监督的局部切空间变换(SLTSA)特征提取,结合支持向量机分类器的故障诊断算法.并且给出了影响SLTSA算法性能的降维维数、近邻数和监督参数选取原则,利用人工智能的方法对参数组合进行优化选取.仿真结果表明,SLTSA算法能够有效的提取发动机复合故障中反映故障的非线性特征,提高故障诊断的精度,达到95.46%.该方法能有效提取发动机复合故障特征,为准确的诊断故障提供依据.
Research of Turbofan Engine Complex Faults Based on Manifold Learning
Aiming at the problem that complex fault of engine is nonlinear and overlapping,which makes the accuracy of fault diagnosis too low,this paper introduces the feature extraction method of supervised local tangent space transform(SLTSA),combines with SVM classifier fault diagnosis al-gorithm.Moreover,the dimensionality reduction,the number of neighbors and the selection principle of supervisory parameters that affect the performance of SLTSA are provided,and parameters are op-timized and selected by artificial intelligence.The simulation results show that the SLTSA can effec-tively extract the nonlinear features of the fault from the spectrum data,and improve the accuracy of fault diagnosis,reaching 95.46%.Therefore,the SLTSA algorithm designed in this paper can effec-tively extract the feature of complex fault and provide basis for accurate fault diagnosis.

spectrum datanonlinear feature extractionwear faultSLTSAfault diagnosis

马力、胡忠意

展开 >

海装沈阳局驻沈阳地区第一军事代表室,辽宁沈阳 110031

光谱数据 非线性特征提取 磨损故障 SLTSA 故障诊断

2024

飞机设计
沈阳飞机设计研究所

飞机设计

影响因子:0.138
ISSN:1673-4599
年,卷(期):2024.44(4)