首页|黄河流域砂土液化判别模型及应用

黄河流域砂土液化判别模型及应用

扫码查看
砂土液化导致地基承载力下降,合理判别砂土液化程度对防治地基下沉等灾害具有重要意义.借鉴机器学习方法,选取 30 组砂土液化数据样本,建立粒子群算法改进最小二乘支持向量机砂土液化判别模型,并与SVM砂土液化判别模型和BP砂土液化判别模型进行了对比分析.结果表明:LSSVM模型通过PSO算法优化后确定正则化参数为323.125247535、核参数为1.0150532465.对于15 组训练样本,PSO-LSSVM砂土液化判别模型和SVM砂土液化判别模型回判准确率为100%,BP砂土液化判别模型回判准确率为93.3%;对于 5组测试样本,PSO-LSSVM砂土液化判别模型预测准确率为100%,而SVM砂土液化判别模型和BP砂土液化判别模型预测准确率为80%;在黄河流域砂土液化预测中,PSO-LSSVM砂土液化判别模型具有更高的预测精度,可指导工程技术人员预测砂土状态制定防治措施.
Discrimination Model and Application of Sand Liquefaction
The liquefaction of sand soil causes the bearing capacity of the foundation to decrease.Reasonable judgment of the degree of sand liquefaction is of great significance to prevent and control disasters such as foundation subsidence.Drawing on machine learning methods,30 sets of sand liquefaction data samples were selected to establish a sand liquefaction discrimination model improved by particle swarm optimization algorithm,and compared with SVM and BP sand liquefaction discrimination model.The results show that the LSSVM model is optimized by the PSO algorithm and determines the regularization parameter to be 323.125247535 and the kernel parameter to be 1.0150532465.For 15 sets of training samples,the PSO-LSSVM sand liquefaction discrimination model and SVM sand liquefaction discrimination model have a return accuracy of 100%,and the BP sand liquefaction discrimination model has a return accuracy of 93.3%.For the five groups of test samples,the prediction accuracy of the PSO-LSSVM sand liquefaction discrimination model was 100%,while the prediction accuracy of the SVM sand liquefaction discrimination model and the BP sand liquefaction discrimination model was 80%.In the prediction of sand liquefaction in the Yellow River Basin,the PSO-LSSVM sand liquefaction discrimination model has higher prediction accuracy and can guide engineering and technical personnel to predict the state of sand and formulate prevention and control measures.

particle swarm algorithmsupport vector machinesand liquefactiondiscriminant prediction

仪晓立、王振军、侯向阳、惠冰、孙巍、张旭、苗鑫

展开 >

中铁一局集团建设安装工程有限公司,陕西 西安 710000

山东省交通科学研究院,山东 济南 250104

粒子群算法 支持向量机 砂土液化 判别预测

山东省交通运输科技计划项目

2023B46

2024

粉煤灰综合利用
河北省墙体材料革新办公室 石家庄市粉煤灰综合利用和墙改办公室

粉煤灰综合利用

CSTPCD
影响因子:0.378
ISSN:1005-8249
年,卷(期):2024.38(3)