首页|有载频率与深度学习在桥梁损伤识别中的应用研究

有载频率与深度学习在桥梁损伤识别中的应用研究

扫码查看
频率作为一种测量方法简单且精度较高的动力特性参数,在损伤识别领域得到广泛应用,但现有的频率变化参数存在非唯一性的问题.为此,提出了基于有载频率指标和深度学习理论的桥梁损伤识别网络,利用损伤前后有载频率数据,构建损伤识别指标参数来识别桥梁的损伤状态.结果表明:识别网络能够有效地进行桥梁结构的损伤定位,频率数据克服了对称结构频率变化的非唯一性限制,增强了参数的表达能力,提高了桥梁损伤定位的有效性和抗噪性能.
Application of Loaded Frequency and Deep Learning in Bridge Damage Identification
As a dynamic characteristic parameter with simple measurement method and high accuracy,frequency has been widely used in the field of damage identification,but the existing frequency variation parameters have the problem of non-uniqueness.Therefore,a bridge damage identification network based on the on-load frequency index and deep learning theory is proposed,and the damage identification index parameters are constructed to identify the damage state of the bridge by using the on-load frequency data before and after the damage.The results show that the identification network can effectively locate the damage of bridge structure,and the frequency data overcomes the non-uniqueness limitation of the frequency change of symmetrical structure,enhances the expression ability of parameters,and improves the effectiveness and anti-noise performance of bridge damage location.

bridge damage identificationloaded frequencydeep learningidentification network

杨超、刘凯、刘亚红、孙建鹏

展开 >

陕西高速公路工程试验检测有限公司,陕西西安 710086

西安建筑科技大学,陕西西安 710086

桥梁损伤识别 有载频率 深度学习 抗噪性

陕西省自然科学基础研究计划面上项目西安市科技创新人才服务企业项目

2020JM-4752020KJRC0047

2024

粉煤灰综合利用
河北省墙体材料革新办公室 石家庄市粉煤灰综合利用和墙改办公室

粉煤灰综合利用

CSTPCD
影响因子:0.378
ISSN:1005-8249
年,卷(期):2024.38(4)