首页|基于DDQN强化学习的沥青路面养护决策

基于DDQN强化学习的沥青路面养护决策

扫码查看
通过DDQN强化学习的方法开展路面养护决策分析,以路面长期效益费用比的最大化为目标构建养护决策模型,计算出效益费用比更优的养护方案.模型以道路条数和使用年限为状态特征,以四种养护措施为动作空间,以路面养护效益与资金比值作为奖励,构建了一种动作选择策略,使养护方案满足最低使用要求.结果表明:基于DDQN养护决策模型的收敛速度比DQN模型快1倍,计算出的养护方案具有较高效益费用比,路面处于优良状态.
Fine Maintenance Decision of Asphalt Pavement based on DDQN Reinforcement Learning
This paper employs a Double Deep Q-Network(DDQN)reinforcement learning approach to analyze pavement maintenance decisions,aiming to maximize the long-term benefit-cost ratio of the pavement.A maintenance decision model is constructed to calculate a more cost-effective maintenance plan.This model uses the number of road segments and years as state features,four maintenance measures as the action space,and the ratio of pavement maintenance benefits to costs as the reward.An action selection strategy is proposed,which ensures that the pavement meets operational requirements.Practical engineering data is used as a case study.The results indicate that the convergence speed of the DDQN-based maintenance decision model is twice as fast as the Deep Q-Network(DQN)model.The calculated maintenance plan demonstrates a higher benefit-cost ratio,keeping the pavement in excellent condition.

asphalt pavementpavement maintenance decisiondeeply reinforcement learningmaintenance plan

石文康、徐勋倩、康峰沂、顾钰雯、GANHOUEGNON Eric Patrick

展开 >

南通大学交通与土木工程学院,江苏南通 226019

南通市公路事业发展中心,江苏南通 226019

沥青路面 路面养护决策 深度强化学习 养护方案

国家重点研发项目

2016YFB0303100

2024

粉煤灰综合利用
河北省墙体材料革新办公室 石家庄市粉煤灰综合利用和墙改办公室

粉煤灰综合利用

CSTPCD
影响因子:0.378
ISSN:1005-8249
年,卷(期):2024.38(4)