首页|轴面激光熔覆W6Mo5Cr4V2与Ni60A-WC异材搭接温度场及应力场数值模拟

轴面激光熔覆W6Mo5Cr4V2与Ni60A-WC异材搭接温度场及应力场数值模拟

扫码查看
通过高速钢(W6Mo5Cr4V2)与Ni60A-WC在轴面上熔覆搭接的温度场和应力场分布,研究不同激光功率、搭接顺序及搭接率对温度场分布的影响规律,及沿搭接熔覆截面特定路径异种材料搭接各向应力分布情况.采用ansys软件模拟搭接熔覆过程温度场及应力场,对各参数采用单因素变量法进行仿真试验;并利用红外测温仪对温度场仿真结果进行验证.激光功率对搭接过程温度场影响最大,随着激光功率的增大搭接顺序对温度场的影响减小,在两道搭接功率均为2 000W时,随着搭接率的增大最高温度先增大后减小,在搭接率为40%时最高温度为最大值.同时搭接涂层的边缘轴向径向应力均表现为压应力;在搭接区环向及径向应力为拉应力.由于热物性的差异,高速钢涂层各向应力整体大于镍基碳化钨涂层.通过试验与仿真温度验证各观测点温度,得出最大温度误差为5.66%,符合预期数值.
Numerical simulation of temperature field and stress field in the lapping of W6Mo5Cr4V2 and Ni60A-WC dissimilar materials by axial laser cladding
Through the temperature field and stress field distribution of the high-speed steel(W6Mo5Cr4V2)and Ni60A-WC cladding lap on the axial plane,the influence of different laser power,lap sequence and lap ratio on the temperature field distribution and the stress distribution of dissimilar materials along the specific path of the lap cladding section are studied.The temperature field and stress field in the process of lapping cladding are simulated with ansys software,and the single factor variable method is used to simulate the parameters;The simulation re-sults of temperature field are verified by using infrared thermometer.The laser power has the greatest influence on the temperature field during the lapping process.With the increase of the laser power,the influence of the lapping sequence on the temperature field decreases.When the two lapping powers are 2 000 W,the maximum temperature first increases and then decreases with the increase of the lapping rate.When the lapping rate is 40%,the maximum temperature is the maximum.At the same time,the axial and radial stresses at the edges of the lapped coatings are compressive forces.The circumferential and radial stresses in the overlap area are tensile forces.Due to the differ-ence of thermophysical properties,the anisotropic stress of high-speed steel coating is larger than that of nickel based tungsten carbide coating.The temperature of each observation point was verified by experiment and simula-tion,and the maximum temperature error was 5.66%,which was in line with the expected value.

laser claddingsplicing of dissimilar materialnumerical simulationW6Mo5Cr4V2nickel based tung-sten carbide

谢伟鹏、许明三、王建国、曾寿金、韦铁平

展开 >

福建省智能加工技术及装备重点试验室(福建理工大学),福建福州 350000

福建理工大学机械与汽车工程学院,福建福州 350000

激光熔覆 异材搭接 数值模拟 W6Mo5Cr4V2 镍基碳化钨

国家自然科学基金资助项目福建省自然科学基金资助项目

515751102020J01872

2024

粉末冶金工业
中国钢研科技集团有限公司 中国钢协粉末冶金分会 中国机协粉末冶金分会

粉末冶金工业

CSTPCD北大核心
影响因子:0.406
ISSN:1006-6543
年,卷(期):2024.34(2)
  • 31