首页|学习者在线动态学习成绩的Logistic曲线增长规律及其聚类研究

学习者在线动态学习成绩的Logistic曲线增长规律及其聚类研究

扫码查看
基于信息化教学中的动态学习数据,采用Logistic曲线拟合学习者的综合在线学习成绩随学习时长的增长规律,可将无穷维函数空间转化为有限维的参数空间,并借助于经典的K-Means聚类算法实现学习者的综合在线学习成绩增长规律的聚类.研究结果表明:学习者可被分为主流学习者和非主流学习者两大类别;主流学习者占全部学习者的96.92%,且可被进一步细分为高效学习者、中效学习者、低效学习者,占全部学习者的比例分别为16.41%、61.02%和19.49%;非主流学习者可被分为长期缓增型学习者和短期陡增型学习者,占全部学习者的比例均为1.54%.此外,不同类别学习者之间的期末考试平均成绩存在显著差异,主流学习者中高效学习者、中效学习者和低效学习者的期末考试平均成绩逐渐递减,但均高于非主流学习者的期末考试平均成绩;在非主流学习者中,短期陡增型学习者的期末考试平均成绩高于长期缓增型学习者的期末考试平均成绩.
To Cluster the Learners'Online Dynamic Learning Performance Based on the Logistic Curve Growth Model
Based on the dynamic learning data in information-based teaching,the Logistic curve is used to fit the growth law of learners'comprehensive online learning performance with the learning time.By doing that,the infi-nite-dimensional function space is transformed into a finite-dimensional parameter space,and the clustering of the growth law of learners'comprehensive online learning performance is realized by using the classical K-Means clus-tering algorithm.The results show that learners can be divided into mainstream learners and non-mainstream learners.Among them,mainstream learners account for 96.92%of all learners,that is,the vast majority,and can be further subdivided into"high-efficient learners""moderate-efficient learners"and"low-efficient learn-ers",which account for about 16.41%,61.02%and 19.49%of all learners,respectively.Non-mainstream learners can be further divided into"long-term slow increase type"learners and"short-term rapid increase type"learners,and both account for 1.54%of all learners.In addition,there is a very significant difference in the av-erage final exam scores between different categories of learners,and the average final exam scores of the"high""medium"and"low"efficient mainstream learners gradually decrease,but they are all higher than those of non-mainstream learners.Among non-mainstream learners,the average final exam scores of learners with"short-term rapid increase type"is higher than those of"long-term slow increase type"learners.

comprehensive online learning performanceLogistic curvetwo-step series curve clustering methodelbow method

熊思灿、农莹

展开 >

东华理工大学经济与管理学院,江西南昌 330013

华中师范大学教育学院,湖北武汉 430079

综合在线学习成绩 Logistic曲线 两步串联曲线聚类法 肘法

2024

东华理工大学学报(社会科学版)
东华理工大学

东华理工大学学报(社会科学版)

CHSSCD
影响因子:0.621
ISSN:1674-3512
年,卷(期):2024.43(1)