首页|尿液中锌的比色智能检测

尿液中锌的比色智能检测

扫码查看
设计制备了对锌有特异性响应、负载显色剂Zincon的比色检测试纸.在滴入pH 9.0的硼酸盐缓冲溶液后试纸呈红色,Zincon和试样中锌络合后,试纸颜色由红色转变为蓝色,以试纸颜色R通道值绘制标准曲线,可定量测定尿液中锌含量.建立以聚丙烯腈(PAN)、聚乙烯吡咯烷酮(PVP)为载体的显色剂保护机制,以静电纺丝法保证比色传感器制备重现性.基于机器学习模型-深度卷积神经网络(Deep convolutional neural networks,DCNN)算法解决显色试纸光谱干扰问题,此算法具有较好预测精准度,搭载到智能手机APP,构成集"快速采样、数据处理和传输、实时、可视化检测"于一体的尿锌全分析系统.方法检测限低至0.1 mg/L,可用于疾病的无创预诊,具有成本低、检测快、易操作、精度好与准确率高的优点.
Intelligent Colorimetric Detection of Urinary Zinc
A colorimetric test paper with specific responsiveness to zinc,employing the chromogenic agent Zincon,has been designed and prepared.Upon the addition of a borate buffer solution with a pH of 9.O,the test paper exhibits a red color.Following the complexation of Zincon with zinc in the test sample,the color of the test paper transitions from red to blue.A standard curve is plotted using the color values in the R channel of the test paper,enabling quantitative determination of zinc content in urine.A colorimetric protection mechanism has been established,utilizing polyacrylonitrile(PAN)and polyvinylpyrrolidone(PVP)as carriers,with electrospinning employed to ensure the reproducibility of the colorimetric sensor preparation.Addressing spectral interference issues in colorimetric paper,a machine learning model-Deep Convolutional Neural Networks(DCNN)algorithm has been employed,demonstrating favorable predictive accuracy.This algorithm has been integrated into a smartphone application,contributing to the formation of a comprehensive urine zinc analysis system that integrates"rapid sampling,data processing and transmission,real-time,and visual detection."The method achieves detection limits as low as 0.1 mg/L,making it applicable for non-invasive pre-diagnosis of diseases.The system is characterized by its low cost,rapid detection,ease of operation,high precision,and accuracy.

Urinary zincMachine learningColorimetric detectionDisease prevention

张子缓、刘凤娇、郑凤英、骆嘉燚、黄昭景、梁洁玲、郑静茵、黄倩燕、李顺兴

展开 >

闽南师范大学化学化工与环境学院,福建漳州 363000

福建省现代分离分析科学与技术重点实验室,福建漳州 363000

尿锌 机器学习 比色检测 疾病预防

国家自然科学基金国家自然科学基金

2167507722074058

2024

分析科学学报
武汉大学,北京大学,南京大学

分析科学学报

CSTPCD北大核心
影响因子:0.717
ISSN:1006-6144
年,卷(期):2024.40(2)
  • 32