首页|基于曲率图卷积的非均匀点云掩码自编码器

基于曲率图卷积的非均匀点云掩码自编码器

扫码查看
提出一种基于曲率图卷积的非均匀分组与掩码策略,用以优化掩码自编码器.首先,提出曲率图卷积以避免固定邻域导致的归纳偏差;其次,在曲率图卷积后引入图池化层,根据点云局部特征进行池化操作并分组;最后,在池化层输出特征的基础上学习每个分组的掩码概率来避免冗余.实验结果表明,本方法能有效提高点云掩码自编码器在下游任务的泛化效果,在ModelNet40 上的分类精度达到93.7%,在Completion3Dv2 上的补全精度达到 5.08,均优于目前主流方法.
Curvature graph convolution for nonuniform point cloud masked autoencoders
A nonuniform grouping and mask strategy are proposed based on curvature graph convolu-tion to further optimize the mask autoencoder.First,curvature graph convolution is proposed to avoid the induction bias caused by fixed neighborhoods.Second,a graph pooling layer is introduced after curvature convolution,which is pooled and grouped according to the local features of point clouds.Finally,the mask probability of each group is learned based on the output features of the pooling layer to avoid redundancy.Experiments show that our method can effectively improve the performance of mask autoencoder in downstream tasks.Our pretrained models achieve 93.7%classification accuracy on ModelNet40 and 5.08 completion accuracy on Completion3Dv2,outperforming current mainstream methods.

autoencoderspoint cloudgraph neural networkpre-trainingself-supervised learning

黄敏明、傅仰耿

展开 >

福州大学计算机与大数据学院,福建 福州 350108

自编码器 点云 图卷积神经网络 预训练 自监督学习

国家自然科学基金资助项目国家自然科学基金资助项目福建省自然科学基金资助项目

12271098617731232019J01647

2024

福州大学学报(自然科学版)
福州大学

福州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.35
ISSN:1000-2243
年,卷(期):2024.52(1)
  • 18