首页|结合机器学习与高光谱遥感的城市内河水质反演

结合机器学习与高光谱遥感的城市内河水质反演

扫码查看
针对当前城市内河氮磷算法研究不足的问题,以福州市晋安河为研究对象、下洞江为验证对象,对总磷(TP)和总氮(TN)这两个重要河流水质指标进行研究.提出单波长连续投影算法(SPA)和双波长皮尔逊相关性分析(Pearson)进行自变量筛选,再结合机器学习算法对晋安河实测光谱数据进行模型构建和水质反演可视.实验表明,TP、TN与氨氮有很强的相关性,在构建TP、TN水质参数反演模型时,加入氨氮的特征波长,并采用SPA+Person+RF算法构建的TP模型效果最优,其R2 为0.92,ERMS为0.005 mg·L-1;采用SPA+Pesrson+SVR算法构建的TN模型效果最优,其R2 为 0.90,ERMS为 0.082 mg·L-1.优化后的算法比传统算法提升显著.经验证,该方法同样适用下洞江水质反演,可用于城市内河水环境监测.
Inversion of urban river water quality based on machine learning and hyperspectral remote sensing
To address the current lack of research on total phosphorus(TP)and total nitrogen(TN)algorithms in urban rivers,this study focuses on investigating the levels of TP and TN in the Jin'an Rive.Xiadong River will serve as the validation object in this research.The single-band sequential projection algorithm(SPA)and the dual-band Pearson correlation analysis(Pearson)were proposed for independent variable screening.These methods were combined with machine learning algorithms to construct models and visualize water quality inversion based on the measured spectral data of the Jin'an River.The experiment shows that TP,TN and ammonia nitrogen have a strong correlation.When building the inversion model of TP and TN water quality parameters,the TP model with the influence band of ammonia nitrogen added and the SPA+Person+RF algorithm is the best,with R2of 0.92 and ERMS of 0.005 mg·L-1.The TN model with SPA+Pesrson+SVR algorithm is the best,with R2 of 0.90 and ERMS of 0.082 mg·L-1.The optimized algorithm is significantly improved than the traditional algorithm.It is verified that the method is also applicable to the water quality inversion of Xia'dong River,and can be used for urban river water environment monitoring.

water quality inversionunmanned aerial vehicle hyperspectralmachine learningtotal phosphorustotal nitrogenurban river

曾江超、黄风华、李秉政、高荣刚

展开 >

福州大学数字中国研究院(福建),福建 福州 350108

福建省空间信息感知与智能处理重点实验室(阳光学院),福建 福州 350015

空间数据挖掘与应用福建省高校工程研究中心(阳光学院),福建 福州 350015

水质反演 无人机高光谱 机器学习 总磷 总氮 城市内河

福建省自然科学基金资助项目福建省自然科学基金资助项目

2019J010882022J01379

2024

福州大学学报(自然科学版)
福州大学

福州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.35
ISSN:1000-2243
年,卷(期):2024.52(1)
  • 16