首页|基于条形卷积和上下文感知的近海水产养殖提取方法

基于条形卷积和上下文感知的近海水产养殖提取方法

扫码查看
利用中等分辨率遥感影像,针对近海养殖区边界模糊、筏式和网箱养殖存在类间干扰等现象,以ResU-net模型为基础,提出一种带有条形卷积模块和上下文感知单元的MSUResUnet模型,以提高模型的特征提取能力,改善近海水产养殖提取任务中出现的漏提和粘连等问题.模型中利用条形池化模块增强编码层与解码层信息的交互,引入条形卷积模块增强对水产养殖线性特征的捕捉能力,通过增加上下文感知单元获取水产养殖区丰富的多尺度上下文信息.在 Sentinel-2 MSI 数据上的实验结果表明,参与比对的 6 个模型中,MSUResUnet模型精度最优,其 Kappa 系数、MIoU、OA 和 F1 分数分别达到了 89.17%、84.33%、96.38%和91.19%;MSUResUnet在养殖较密集的兴化湾、三沙湾和罗源湾附近海域均获得较高精度,具有较强的特征提取和抗干扰能力,能够满足高精度的大范围中等分辨率影像近海水产养殖信息提取需求.
Method of offshore aquaculture area extraction based on strip convolution and context awareness
Aiming at the problems in medium resolution remote sensing image such as fuzzy boundary,inter-class interference in rafts and nets farming,the MSUResUnet model with strip convolution module and context-aware unit is proposed in this study based on ResUnet to improve the feature extraction ability,which can improve the problems of missing extraction and adhesion in offshore aquaculture extraction tasks.The strip pooling module in the model is used to enhance the interaction between the encoding and decoding layer information.The multi-directional strip convolution module can better capture the linear characteristics of aquaculture,and the context-aware unit can obtain the rich multi-scale context information of aquaculture area.Experiments results on Sentinel-2 MSI data show that among the six models participating in the comparison,the MSUResUnet model has the best accuracy,and its kappa,MIoU,OA and F1-score reach 89.17%,84.33%,96.38%and 91.19%,respectively.The MSUResUnet model achieves high accuracy in farming extraction in the more intensively farmed waters around Xinghua Bay,Sansha Bay and Luoyuan Bay.MSUResUnet model has stronger feature extraction and anti-interference ability,which can meet the needs of high-precision large-scale medium-resolution image offshore aquaculture information extraction.

raft and cage aquaculturedeep learningResUnet modelmulti-directional strip convolu-tion modulecontext-aware unit

吴婷、陈红梅、罗冬莲、陈芸芝

展开 >

福州大学数字中国研究院(福建),福建 福州 350108

卫星空间信息技术综合应用国家地方联合工程研究中心,福建 福州 350108

福建省水产研究所,福建 厦门 361006

筏式和网箱养殖 深度学习 ResUnet模型 多方向条形卷积 上下文感知单元

福建省自然科学基金资助项目福建省水产研究所科技引领专项资助项目

2022J011112022KJYL03

2024

福州大学学报(自然科学版)
福州大学

福州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.35
ISSN:1000-2243
年,卷(期):2024.52(1)
  • 25