首页|改进残差网络的逆变器开路电路故障诊断

改进残差网络的逆变器开路电路故障诊断

扫码查看
针对传统三相电压源逆变器开路故障诊断方法存在准确率低和鲁棒性差的问题,提出一种用于故障诊断的改进二维卷积神经网络优化方法.该方法首先引入一种新的数据预处理方式,通过马尔可夫变迁场(MTF)将原始时域电压信号数据转换成二维灰度图像,有效保留特征的时空关系;其次,提出采用并行注意力机制对卷积神经网络ResNet18 特征提取层提取的特征分别进行通道和空间特征筛选,并完成有效特征融合;最后,融合的特征经ResNet18 全连接层和输出层得到故障分类结果.实验结果表明,所提出的改进故障诊断方法能将诊断精度提升至 99.80%;在不同噪声条件下均能保持 90%以上的分类准确性,验证该方法可有效提高逆变器开路故障诊断性能和鲁棒性.
Fault diagnosis of inverter open circuit with improved residual network
An improved two-dimensional convolutional neural network optimization method for fault diagnosis is proposed to address the problems of low accuracy and poor robustness of the traditional open-circuit fault diagnosis method for three-phase voltage source inverters.The method first introduces a new data preprocessing method to convert the original time-domain voltage signal data into two-dimensional grayscale images by Markov transition fields(MTF),which effectively preserves the spatio-temporal relationships of the features.Then,a parallel attention mechanism is proposed to filter the features extracted by the ResNet18 feature extraction layer of the convolutional neural network for channel and spatial features,respectively,and complete the effective feature fusion.Finally,the fused features are obtained as fault classification results by ResNet18 fully connected layer and output layer.The experimental results show that the proposed improved fault diagnosis method can improve the diag-nosis accuracy to 99.80%,and maintain more than 90%classification accuracy under different noise conditions,which verifies that the method can effectively improve the performance and robustness of inverter open-circuit fault diagnosis.

invertersopen-circuit faultattention mechanismMarkov transition fieldsResNet18 network

谢泽文、陈裕成、柴琴琴、林琼斌、王武

展开 >

福州大学电气工程与自动化学院,福建 福州 350108

漳州职业技术学院 电子信息学院,福建 漳州 363000

逆变器 开路故障 注意力机制 马尔可夫变迁场 ResNet18网络

福建省自然科学基金资助项目福建省科技厅高校产学合作资助项目

2021J016362021H6014

2024

福州大学学报(自然科学版)
福州大学

福州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.35
ISSN:1000-2243
年,卷(期):2024.52(1)
  • 17