首页|采用CNN的MIMO-OFDM可见光通信接收机

采用CNN的MIMO-OFDM可见光通信接收机

扫码查看
为了克服多输入多输出(MIMO)-正交频分复用(OFDM)可见光通信(VLC)系统中存在的信号串扰、高峰均功率比、发光二极管(LED)的带宽受限和非线性效应等问题,提出一种基于卷积神经网络(CNN)的VLC接收机.该接收机通过对接收端失真信号和发射端原始信号的学习,能够实现MIMO-OFDM可见光通信系统的信号解调,有效提升系统对非线性失真的抑制能力并具有较低的复杂度.实验结果表明,与最小二乘法接收机相比,CNN接收机能有效补偿信号受到的线性和非线性失真以及不同用户间的信号串扰,平均误码率提升超过一个数量级,同时有效克服LED带宽受限问题,比特传输速率提升53%.
Research on CNN-based MIMO-OFDM visible light communication receiver
To overcome challenges such as signal interference,high peak-to-average power ratio,limited bandwidth of light-emitting diodes(LED),and nonlinear effects in multiple-input multiple-output(MIMO)-orthogonal frequency-division multiplexing(OFDM)visible light communication(VLC)systems,a VLC receiver based on convolutional neural network(CNN)is proposed.The receiver can learn from the distorted signal at the receiver and the original signal at the transmitter to achieve signal demodulation in MIMO-OFDM visible light systems,effectively improving the system's ability to suppress nonlinear distortion and having lower complexity.The experimental results show that compared with the least square receiver,the CNN receiver can effectively compensate for the linear and nonlinear distortions of the signal as well as the inter-user signal interference,and the average bit error rate is improved by more than an order of magnitude.At the same time,it can effectively over-come the problem of LED bandwidth limitation,and the bit transmission rate is increased by 53%compared with the least square receiver.

multiple-input-multiple-outputorthogonal frequency division multiplexingconvolutional neural networksignal compensationvisible light communication

聂康宁、林邦姜、骆加彬、万翔宇、潘亚东

展开 >

福州大学电气工程与自动化学院,福建福州 350108

中国科学院海西研究院泉州装备制造研究中心,福建泉州 362000

多输入多输出 正交频分复用 卷积神经网络 信号补偿 可见光通信

福建省自然科学基金资助项目福建省重点技术创新及产业化资助项目

2022J014992023G006

2024

福州大学学报(自然科学版)
福州大学

福州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.35
ISSN:1000-2243
年,卷(期):2024.52(2)
  • 20