首页|利用GAT的光伏阵列故障诊断方法

利用GAT的光伏阵列故障诊断方法

扫码查看
提出一种基于图注意力网络(graph attention network,GAT)的光伏阵列故障诊断模型,以解决光伏阵列中因故障导致的发电效率降低、正常运行受阻等问题.通过离散小波变换和滑窗算法截取故障后稳态时序信号并将其分割成子区间,将子区间视为图节点.使用K邻近构图法将故障后稳态电压、电流数据转变成图结构,构建节点级GAT模型.通过多头注意力机制自动提取电压、电流图结构的故障特征.通过实验室光伏阵列获取实验数据集,对所提模型进行测试.结果表明,本模型能准确诊断光伏阵列的不同故障状态,平均准确率达到99.790%,效果优于所对比的其他网络模型.
Fault diagnosis for photovoltaic arrays using GAT
To solve the problems such as reduced power generation efficiency and impeded normal operation caused by faults in photovoltaic arrays,a fault diagnosis model for photovoltaic array is proposed based on GAT.The proposed model leverages discrete wavelet transform and sliding window algorithm to capture post-fault steady-state signals and segment them into sub-intervals,which are treated as graph nodes.Then,the K-nearest neighbor method is used to transform them into graphs.The node-level GAT model can automatically extract fault features from voltage and current graphs using the multi-head attention mechanism.The experimental dataset obtained from the laboratory photovoltaic array is applied for testing the proposed model.The result demonstrates that the GAT model reaches 99.790%in diagnosing various photovoltaic array faults and outperforms other compared network models.

photovoltaic arrayfault diagnosisgraph structuregraph neural networkattention mechanism

董浪灿、卢箫扬、林培杰、程树英、陈志聪、吴丽君

展开 >

福州大学物理与信息工程学院,微纳器件与太阳能电池研究所,福建 福州 350108

光伏阵列 故障诊断 图结构 图神经网络 注意力机制

2024

福州大学学报(自然科学版)
福州大学

福州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.35
ISSN:1000-2243
年,卷(期):2024.52(5)