首页|融合全局上下文的近岸养殖池塘提取算法

融合全局上下文的近岸养殖池塘提取算法

扫码查看
针对现有方法对于养殖池塘和干扰地物的区分效果不足,在多源高分辨率遥感影像上的普适性有待验证等问题,提出一种融合全局上下文信息的PG-Unet养殖池塘提取模型.该模型在U-Net的基础上,通过增加金字塔特征提取单元来捕捉丰富的全局上下文信息,增加全局引导流来改善不同级别特征图的质量,提升模型在多干扰地物环境定位目标的能力.在GF-2 PMS和BJ-2 PMS数据集上的实验结果表明,PG-Unet模型精度最优,其 IoU 和 F1 分数分别达到 92.30%、96.00%和 92.07%、95.87%,优于 U-Net、DensenetUnet 和 U2Net等方法,具有更强的抗干扰能力和普适性,能更好地区分养殖池塘和干扰地物;同时,PG-Unet模型在诏安湾养殖区域应用也取得了较高的提取精度,能够实现大范围养殖池塘空间分布信息自动精准提取.
Inshore aquaculture pond extraction algorithm based on global context fusion
Aiming at the problems that the existing methods are not effective in distinguishing aquacul-ture ponds and interfering objects,and the universality of multi-source high-resolution remote sensing images needs to be verified,a PG-Unet aquaculture pond extraction model integrating global context information is proposed.On the basis of U-Net,the model captures rich global context information by adding pyramid feature extraction unit,and increases global guiding flow to improve the quality of feature maps at different levels,so as to improve the ability of the model to locate targets in multi-interference environment.The experimental results on GF-2 PMS and BJ-2 PMS datasets show that the PG-Unet model has the best accuracy,and its IoU and F1 scores reach 92.30%,96.00%and 92.07%,95.87%,respectively,which are better than U-Net,DensenetUnet and U2Net.It has stronger anti-interference ability and universality,and can better distinguish aquaculture ponds and disturbed objects.At the same time,the application of PG-Unet model in Zhao'an Bay aquaculture area has also achieved high extraction accuracy,which can realize the automatic and accurate extrac-tion of spatial distribution information of large-scale aquaculture ponds.

aquaculture pondsU-Net modelpyramid feature extraction unitglobal guiding flows

彭俊、陈红梅、罗冬莲、陈芸芝

展开 >

福州大学数字中国研究院(福建),福建 福州 350108

福建省水产研究所,福建厦门 361006

卫星空间信息技术综合应用国家地方联合工程研究中心,福建 福州 350108

养殖池塘 U-Net模型 金字塔特征提取单元 全局引导流

2024

福州大学学报(自然科学版)
福州大学

福州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.35
ISSN:1000-2243
年,卷(期):2024.52(5)