首页|一种基于高分辨率遥感影像的近岸筏式养殖区提取方法

一种基于高分辨率遥感影像的近岸筏式养殖区提取方法

扫码查看
利用WorldView-2高分辨率遥感影像,提出一种SS-UNet网络模型用于筏式海水养殖区信息提取.在顾及筏式海水养殖区形状特征的情况下,SS-UNet模型在U-Net模型的"U"形架构上,引入SPM和SA模块.测试结果表明SS-UNet模型取得了最高的精度水平,其中MIoU和Kappa系数分别达到91.72%和0.912 3.并且该模型可以更加准确地提取筏式海水养殖区,遗漏和错误分类等现象出现较少.与U-Net模型相比,在增加极少模型复杂度的情况下,SS-UNet模型的MIoU和Kappa系数分别提升了 10.41%和0.126.结果表明,SS-UNet模型实现了在高分辨率遥感影像中近岸海域筏式海水养殖区提取的结果精度和提取性能的有效提升.
A extraction method of offshore raft aquaculture based on high-resolution remote sensing images
Using WorldView-2 high-resolution remote sensing images,this study proposed a SS-UNet network model for raft aquaculture area information extraction.The SS-UNet model introduces the SPM module and the SA module on the"U"structure of the U-Net model,taking into account the shape characteristics of the raft aquaculture area.The test results showed that the SS-UNet model achieved the highest level of accuracy,in which the MIoU and Kappa coefficient reached 91.72%and 0.912 3,respectively.And the model could extract the raft aquaculture areas more accurately,with less phenomena such as omission and misclassification.Compared with the U-Net model,the MIoU and Kappa coefficient of the SS-UNet model were improved by 10.41%and 0.126,respectively,with a very small increase in model complexity.The results showed that the SS-UNet model realized the effective improvement of the result accuracy and extraction performance of raft aquaculture areas in offshore waters in high-resolution remote sensing images.

raft aquaculturehigh-resolution remote sensing imagesSS-UNet modelstrip pooling moduleshuffle attention module

刘靳、卢毅敏、郭向钟

展开 >

福州大学数字中国研究院(福建),空间数据挖掘与信息共享教育部重点实验室,地理空间信息技术国家地方联合工程技术研究中心,福建 福州 350108

筏式海水养殖 高分辨率遥感影像 SS-UNet模型 SPM模块 SA模块

2024

福州大学学报(自然科学版)
福州大学

福州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.35
ISSN:1000-2243
年,卷(期):2024.52(5)