首页|联邦学习相似度导向的迭代聚合算法

联邦学习相似度导向的迭代聚合算法

扫码查看
针对联邦学习中模型聚合性能和拜占庭鲁棒性问题,提出一种相似度导向的迭代聚合算法.服务器在收集客户端上传的梯度后,初始化一个相似梯度,计算每个客户端梯度与相似梯度、客户端模型与上一轮全局模型的相似度距离,根据这些距离为每个客户端分配不同的权重,以聚合出新的相似梯度.不断迭代上述计算和聚合过程,直至寻找出与所有客户端最为相似的全局梯度,将其作为本轮的聚合结果.在多个数据集以及多种神经网络结构上进行实验,结果证明该聚合算法可获得优异的模型性能.此外,通过在聚合前添加基于最小生成树的过滤器,有效增强聚合算法对拜占庭攻击的鲁棒性.
Similarity-driven iterative aggregation algorithm for federated learning
To address the issue of model aggregation performance and Byzantine robustness in federa-ted learning,a similarity-oriented iterative aggregation algorithm is proposed.After collecting gradients uploaded by clients,the server initializes a similarity gradient,computes similarity distances between each client gradient and the similarity gradient,and between the client model and the global model of the previous round,and assigns different weights to each client according to these distances to aggre-gate a new similarity gradient.The above calculation and aggregation process is continuously repeated until the global gradient that is most similar to all clients is determined,which is used as the aggrega-tion result for the current round.Experimental results show that the aggregation algorithm can achieve excellent model performance on several datasets and a variety of neural network structures.Further-more,the robustness of the aggregation algorithm against Byzantine attacks can be effectively enhanced by adding a minimal spanning tree-based filter before aggregation.

aggregation update algorithmfederated learningmachine learningrobust aggregation

管林、王平、程航、王美清、刘培豪、吴远翔

展开 >

福州大学数学与统计学院,福建 福州 350108

福州大学计算机与大数据学院,福建 福州 350108

聚合更新算法 联邦学习 机器学习 鲁棒性聚合

2024

福州大学学报(自然科学版)
福州大学

福州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.35
ISSN:1000-2243
年,卷(期):2024.52(6)