首页|采用PCA-CSA-Informer模型的光伏短期发电量预测

采用PCA-CSA-Informer模型的光伏短期发电量预测

扫码查看
为提高光伏发电的预测精确度,提出一种结合主成分分析(PCA)、双通道注意力(CSA)机制和Informer的短期光伏发电量预测新模型.采用Spearman相关分析方法对光伏发电的多元时间序列进行分析,并结合PCA提取时序特征,构建输入数据集.同时,引入CSA机制模块,提取光伏发电历史数据的时间维度和空间维度的特征,然后输入Informer模型进行预测.采用以 30 min为分辨率的光伏电站公开数据集进行实验验证和对比分析.实验结果表明,本研究所提出的预测模型在 4 步预测中的平均绝对误差为 0.061 5,均方误差为0.0205,均方根误差为 0.1435,R2 为 0.9872,均优于其他比较模型,有望为光伏短期发电量预测提供更好的预测精确度.
Short-term power generation forecasting study of PV based on PCA-CSA-Informer modeling
In order to improve the prediction accuracy for photovoltaic(PV)power generation,this paper proposes a new model for short-term PV power generation prediction that combines principal component analysis(PCA),channel spatial attention(CSA)and Informer.The multivariate time series of PV power generation is analyzed by Spearman correlation analysis,and the time series features are extracted by combining with PCA to construct the input dataset.At the same time,CSA mechanism module is introduced to extract the features of the time dimension and spatial dimension of the histori-cal data of PV power generation,which are then input into the Informer model for prediction.The pub-lic dataset of PV power plants with a resolution of 30 min is used for experimental validation and com-parative analysis,and the experimental results show that the prediction model proposed in this paper has mean absolute error of 0.0615,mean squared error of 0.0205,root mean squared error of 0.1435,and R2 of 0.9872 in four-step prediction,which are all superior to the other comparative models,and it is expected to provide PV short-term power generation prediction with better prediction accuracy.

photovoltaic power generation forecastshort-term power generationInformer modelprincipal component analysisdual channel attention mechanism

蔡伟雄、陈志聪、吴丽君、程树英、林培杰

展开 >

福州大学物理与信息工程学院,微纳器件与太阳能电池研究所,福建 福州 350108

光伏发电预测 短期发电量 Informer模型 主成分分析 双通道注意力机制

2024

福州大学学报(自然科学版)
福州大学

福州大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.35
ISSN:1000-2243
年,卷(期):2024.52(6)