首页|标签相关的多标签分类算法

标签相关的多标签分类算法

扫码查看
针对多标签分类问题,建立一种考虑标签间相关性的多标签分类模型.首先,对属性值为数值型的多标签数据集,建立基于类和属性依赖度的离散化MLAIM(Multi-Label Attribute Inter-dependence Maximization)算法.其次,通过对标签集进行贝叶斯网结构学习,得到每个标签的父节点,提出标签相关的多标签分类模型,即MLLD(Multi-Label Classification algorithm based on Lael Dependency)算法,并给出MLLD算法的具体过程.通过数值实验将MLLD算法与二元关联(BR)算法等4种算法进行比较,结果表明MLLD算法分类效果更好.
Multi-label classification algorithm based on label dependency
For the multi-label classification problem ,a multi-label classification model based on label dependency is established .Firstly ,MLAIM discrete algorithm is proposed for multi-label dataset with attribute value as numerical ,in order to label dependency of multi-label classifica-tion .Secondly ,based on the structure learning of Bayesian networks on the label sets ,the par-ent of each label is obtained .Moreover ,the multi-label classification models and algorithms are given .Finally the efficiency of MLLD algorithms is proved by some numerical experiments .

discretizationBayesian networknaive bayes classifiermulti-label

乔亚琴、马盈仓、张毅斌、杨小飞

展开 >

西安工程大学 理学院 ,陕西 西安 710048

离散化 贝叶斯网 朴素贝叶斯分类器 多标签学习

国家自然科学基金资助项目西安市科技计划项目西安工程大学研究生创新基金资助项目

11501435CXY14412CX201726

2017

纺织高校基础科学学报
西安工程大学 全国纺织教育学会

纺织高校基础科学学报

CSTPCD
影响因子:0.339
ISSN:1006-8341
年,卷(期):2017.30(4)
  • 4
  • 21